ADDENDUM NO. 2 DATE: August 14, 2012

RFP NO: RFP-DOT-12/13-9003-JP

RFP TITLE: Statewide GPS Station Network Infrastructure Upgrade

PROPOSAL DUE DATE AND TIME: August 28, 2012 at 3:00 P.M., LOCAL TIME

Notice is hereby given of the following changes, Questions and Answers to the above referenced RFP:

Delete: Exhibit “A”, Scope of Services in its entirety

Add: Exhibit “A”, Scope of Services, revised 08/14/2012

Proposers must acknowledge receipt of this Addendum by completing and returning to the Procurement Office, by no later than the time and date of the proposal opening. Failure to do so may subject the proposer to disqualification.

Joyce Plummer, Procurement Agent

______________________________ Proposer
______________________________ Address

______________________________ Submitted by (Signature)

Failure to file a protest within the time prescribed in Section 120.57(3), Florida Statutes, or failure to post the bond or other security required by law within the time allowed for filing a bond shall constitute a waiver of proceedings under Chapter 120, Florida Statutes.
Technical Questions received from Prospective Proposers and FDOT Answers

RFP Title: Statewide GPS Station Network Infrastructure Upgrade
RFP Number: RFP-DOT-12/13-9003-JP

1. Are survey controllers (aka Data Collectors) to be supplied with the GNSS RTK Rover Sensors as specified on items 4 and 5 or will the DOT continue to utilize their older controllers?

FDOT Answer: All systems will come with new data collectors/controllers.

2. Are RADOMES required to be supplied along with the GNSS Choke Ring antennas?

FDOT Answer: Radomes are not specified.

3. 3.1.4 states “provide at the vendors expense training at the corporate headquarters”, however the contract also states that the DOT is not required to purchase the total number of items within the contract. Is there a minimum number which the DOT guarantees they will purchase. This is important as there is not an individual line item for training and thus must be divided among the cost of the individual receivers. This same question also applies to 3.2.4.

FDOT Answer: Training for 3.1.4 only pertains to the Reference Station Software and will be at the location where all the technical staff are available. Training for 3.2.4 is for the district RTK rovers and is onsite at the local district offices. There is no minimum or maximum quantity.

4. For the Annual Maintenance items (6 and 7), training is also required. Is this training required each year, or is this contract only applying to a single year and not ongoing yearly maintenance.

FDOT Answer: Training for item 6 may require subsequent sessions, but these follow-up sessions may not need to be held at vendor/developers site. Training for item 7 is considered to be a one-time session.

5. Will the FLDOT consider surrendering the existing Leica 300/500 systems to the vendor as trade-in to reduce the overall cost of the contract?

FDOT Answer: We have no plans to trade in at this point.

6. Will the vendor be held to Annual Maintenance cost for future years or are these line items (6 & 7) only for year 2013?

FDOT Answer: If software in line item 6 is non-standard, there will be a 3 year maintenance requirement to allow operations staff sufficient time to become proficient with software.

7. What are the number of reference stations covered by the current SpiderNet license?

FDOT Answer: 105 but are planning to add up to 10 additional sites.
1. For the required references from other projects, is there a set format that it needs to be received other than specific letter head of the entity?

FDOT Answer: No. Must be on company letterhead.

2. Re. Page 2

"PRICE PROPOSAL" FORM
Statewide GPS Station Network Infrastructure Upgrade
 3 GNSS Choke Ring
And

Page 25

3.1. FPRN Continuously Operating Reference Stations
3.1.3. Objective: Replace all antennae with GNSS Choke Ring...

a. Is the State of Florida referring to GNSS Choke Ring or GNSS Choke Ring antennas

FDOT Answer: GNSS CHOKE RING ANTENNA

b. And since the State of Florida is specific on requesting board-level upgrade in other line items, why does it not also permit such board level update for these antennas? The technology not only exists, it is used widely.

FDOT Answer: THERE IS NOTHING THAT PREVENTS VENDOR FROM PROPOSING UPGRADE TO ANTENNA, PROVIDED PARTS ARE READILY AVAILABLE. WE WILL ALSO REQUIRE A 7 DAY TURN AROUND FOR ANY PART BEING UPGRADED.

c. Can the State of Florida clarify exactly what is the current inventory of these GPS-only choke ring antennas – both deployed and those sitting in its warehouse in Tallahassee – and which could be easily upgraded to GNSS capabilities at a much lower cost?

FDOT Answer: DEPLOYED = 70 +/-
STORAGE = 15 +/-

3. Re. Page 2

IN-STATE PRICE PREFERENCE
Does the State of Florida also provide or recognize preferential treatment for “Made in USA (Country of Origin Declaration)” goods to be acquired under this RFP?

FDOT Answer: Bid as specified or approved equivalent.

4. Re. Page 24

3.0 PROJECT OBJECTIVE
“It should be noted that the FDOT will be responsible for all onsite sensor replacements, and there should be no expectation for the consultant to visit these sites.”

Is it also expected that any such “onsite sensor replacement” also include that of the GNSS antenna exchange, replacement or board-level upgrade?

FDOT Answer: NO. THIS REFERS TO THE PHYSICAL HARDWARE INSTALLATION. ANY BOARD LEVEL UPGRADES ARE TO BE PERFORMED AT THE FACTORY, UNDER CONTROLLED ENVIRONMENTAL CONDITIONS.

5. Re. Page 24

3.0 PROJECT OBJECTIVE
Additionally, the FDOT seeks to upgrade to GNSS the existing inventory of Leica System 1200 rovers assigned to the 7
Districts throughout the state. The FDOT currently has 27 variants of the System 1200 that are GPS only. The Department also intends to replace any Leica System 300/500 that is in production.

1. How many GPS-only Leica System 1200 rovers are owned and used by all Districts throughout the state?

2. How many Leica System 300 and 500 GPS receivers are currently in use? How many are intended to be replaced as part of this RFP?

FDOT Answer: PARTS A/B QUANTITIES SPECIFIED IN THE PRICE LIST PROVIDED IN THE RFP

6. Re. Page 25
3.1.5. All proposed sensors MUST provide “active” control to the FPRN software; Leica SpiderNet. The software MUST have direct access to the sensor to provide basic/advanced configuration, direct data downloads, firmware “push” upgrades and power/reboot functionality. Web interface capabilities are a bonus, but will be only considered as a secondary means of sensor access and will not substitute for active control.

With the changes based on the F1879 Addendum1RFPDOT12139003JP, can the State of Florida modify this section to allow for equivalency of the “active control” being still provided but to the selected FPRN software as well?

FDOT Answer: NOT SURE I UNDERSTAND THE QUESTION. REGARDLESS OF SOFTWARE PROPOSED, THERE MUST BE ACTIVE CONTROL OF EACH SENSOR FROM THE SERVER/SOFTWARE.

As it relates to the board replacement options, can you please clarify what the warranty period will be? Does it provide a warranty period on the board alone or on the receiver as a whole?

FDOT Answer: IT IS FOR THE SENSOR AS A WHOLE WITH A WARRANTY PERIOD GRANTED AS IF THE SENSOR WERE PURCHASED NEW.

In response to the questions that Shea Griffin submitted we have a couple of additional questions regarding the rover requirements.

4.2.1.7.1.1 -40° C to +65° C (storage)
4.2.1.7.1.2 -40° C to +80° C (operating)

FDOT Answer: Yes you are correct. These are inadvertently reversed – see Revised Scope of Services.

Has the above two specifications been reversed. Traditionally the storage temperatures would be greater than the operating temperatures.

Items 6, 7 – Annual maintenance

Is the Florida DOT looking for a 1 year Annual maintenance agreement or multiple years. Should multiple years be required please indicate the number of years required.

FDOT Answer: If the proposal is coming from a non-standard vendor, then yes there will need to be a multi-year maintenance period (3 yr no cost). Given there has been no direct experience with software from a non-standard provider, we will need more time to develop proficiency for in house staff.
Can you confirm that only Leica Branded equipment will be considered compliant for the purpose of this RFP?

FDOT Answer: No. Leica is the current FDOT/FPRN standard. We have specified what we have as the standard, but other vendors are free to propose a solution. However, the solution provided must follow the “all-in” rule. This includes all CORS hardware and software as well as all District rovers and software.

For Trimble Navigation, I am based in Jacksonville, Florida for my residence. Could you please clarify if the proposal I plan to submit will be qualified for in-state price preference due to my in state location? If not, what parameters disqualify my proposal for in-state price preference?

IN-STATE PRICE PREFERENCE
In accordance with Section 287.084, Florida Statutes, when the lowest responsible and responsive bid, proposal, or reply is submitted by a vendor whose principal place of business is located outside the state of Florida, a 5% price preference shall be awarded to the lowest responsible and responsive vendor whose principal place of business is located in the state of Florida unless the state where the out-of-state vendor is located provides a price preference for businesses having a principal place of business in that state. In that case, the same price preference shall be awarded to the lowest responsible and responsive vendor whose principal place of business is located in the state of Florida responding to this competitive solicitation. A vendor whose principal place of business is located outside the state of Florida, must accompany their bid response documents with a written opinion of an attorney at law licensed to practice law in that foreign state, as to the preferences granted by that state to its own business entities in the letting of public contracts.

FDOT Answer: The In-State Price Preference applies only to Invitation to Bid. This is a Request for Proposal (RFP). In-State Price Preference does not apply to this procurement.
Exhibit “A” Scope of Services

Request for Proposal: RFP-DOT-12/13-9003-JP

Statewide GNSS RTK Network

Infrastructure Modernization

1.0 INTRODUCTION

The Florida Department of Transportation (Florida DOT) is requesting proposals from qualified firms to provide a hardware and software upgrade solution to the statewide real-time, kinematic global navigation satellite system (RTK-GNSS) throughout Florida. This RFP is designed to provide interested parties with sufficient basic information to submit proposals meeting the minimum requirements, but is not intended to limit a proposal’s content or exclude any relevant or essential data. Interested parties are at liberty and are encouraged to expand upon the specifications after meeting the specified requirements.

The Department’s primary objective is to maintain consistency and continuity with both hardware and software at the statewide and district levels. Any proposal MUST ensure these concerns are met. The Department and its Districts have each standardized on a specific platform. Responses to this proposal from vendors outside of the current standard are encouraged, but will be required to either operate entirely within the standard hardware and software regime, or replace the regime in total.

Background Information

Global positioning system (GPS) capabilities have spawned new industries, vastly improved some existing applications, and have lead to the research and development of applications that could only be envisioned a few years ago. The information (location, direction, and velocity) capabilities provided by GPS have distinct advantages over its predecessors: all weather capability, 24 hour per day service, direct digital location data capture, unparalleled accuracy, lack of need for inter visible points, and real-time or post processing capabilities.

The primary application areas that use GPS provided information are survey control, photogrammetry, GIS applications, and navigation. Within each of these application areas the user's requirements for information, accuracy, and timely delivery of information must be resolved prior to acquiring, designing, developing or implementing a specific application that uses GPS technology. This RFP is intended to be the basis of a contract for the upgrade of statewide, real-time GPS network hardware and software for the State of Florida.

2.0 PROJECT DESCRIPTION

The Florida DOT has determined there are numerous benefits to a system of networked reference stations using GPS for surveying and road construction projects. The Florida Permanent Reference Network (FPRN) has existed in the State of Florida since the late 1990’s. FPRN is the statewide system of Continuously Operated Reference Stations as operated by the Florida Department of Transportation (FDOT). This network consists of a collection of permanently fixed dual frequency, geodetic class Global Positioning System (GPS) sensors installed throughout the state of Florida.
In order to simplify the process of relative GPS positioning, many organizations are establishing automated reference station facilities. These unmanned, permanently configured facilities continuously collect and record GPS data. These reference station data are then made available to thousands of end users.

This system was designed and deployed as a mechanism to provide stable GPS control to a diverse user base. Its sole function is to minimize the efforts of the GPS surveying community and provides substantial increases in efficiency.

This RFP shall be considered “All-or-None”. The Department does not wish to maintain a hybrid system. Both Reference Station and Rover sensors must be of common brand and must have seamless compatibility with existing infrastructure.
The FPRN is a complex, yet manageable system, which has several functional categories, each with its own operational responsibilities. A general schematic is included illustrating what and where each piece fits.

GENERAL SCHEMATIC

At this time, the FPRN hardware infrastructure is dated and in need of upgrade. These upgrades can and will bring the FPRN infrastructure current with the latest production sensors, providing a full GNSS solution to the users of the FPRN. The existing FPRN deployment is shown in the map provided below (Figure 1).
3.0 PROJECT OBJECTIVE

The FPRN is comprised of approximately 20 Ashtech Z12/3 GPS Reference sensors that will be replaced with current production hardware and approximately 45 Leica GRX1200 Pro GPS Reference sensors that will receive a board level upgrade. Each sensor shall connect to a Dorne-Margolin type GNSS Choke Ring Antenna. It should be noted that the FDOT will be responsible for all onsite sensor replacements, and there should be no expectation for the consultant to visit these sites.

Additionally, the FDOT seeks to upgrade to GNSS the existing inventory of Leica System 1200 rovers assigned to the 7 Districts throughout the state. The FDOT currently has 27 variants of the System 1200 that are GPS only. The Department also intends to replace any Leica System 300/500 that is in production. All Leica Systems 300/500 that had been identified as a spare or back-up will be surplused and removed from the FDOT inventory.
3.1. FPRN Continuously Operating Reference Stations

3.1.1. **Objective:** Upgrade existing Leica GRX1200 Pro GPS Reference sensors at the board level. This upgrade shall be sufficient to ensure each sensor is capable of tracking ALL current and proposed Satellite Navigation Systems, to include GPS, Glonass, and Galileo.

3.1.2. **Objective:** Replace existing Ashtech Z12/3 GPS Reference sensors with hardware sufficient to ensure each sensor is capable of tracking ALL current and proposed Satellite Navigation Systems, to include GPS, Glonass, and Galileo.

3.1.3. **Objective:** Replace all antennae with GNSS Choke Ring sufficient to track all current and proposed Satellite Navigation Systems, to include GPS, Glonass and Galileo and must include a National Geodetic Survey approved leveling adapter.

3.1.4. **Objective:** Provide, at vendors expense, comprehensive training at the manufacturers headquarters to cover advanced instruction in operations, user support and troubleshooting.

3.1.5. All proposed sensors MUST provide “active” control to the FPRN software; Leica SpiderNet. The software MUST have direct access to the sensor to provide basic/advanced configuration, direct data downloads, firmware “push” upgrades and power/reboot functionality. Web interface capabilities are a bonus, but will be only considered as a secondary means of sensor access and will not substitute for active control.

3.2. FDOT District GNSS Rovers

3.2.1. **Objective:** Upgrade existing Leica System 1200 GPS Rover sensors at the board level. This upgrade shall be sufficient to ensure each sensor is capable of tracking ALL current and proposed Satellite Navigation Systems, to include GPS, Glonass, and Galileo.

3.2.2. **Objective:** Replace existing Leica System 300 and System 500 GPS Rover sensors with hardware sufficient to ensure each sensor is capable of tracking ALL current and proposed Satellite Navigation Systems, to include GPS, Glonass, and Galileo.

3.2.3. **Objective:** Provide annual maintenance for the FDOT GNSS processing software; Leica Geo-Office Pro (LGO).

3.2.4. **Objective:** Provide comprehensive 3 day onsite training at each of the FDOT Districts for any processing software and GNSS hardware.

3.2.5. All hardware MUST provide seamless integration with existing standard software. Leica Geo-Office Pro (LGO) MUST be capable of processing data directly from any proposed sensor.

3.3. FPRN GNSS-RTK Software Maintenance

3.3.1. **Objective:** Provide annual maintenance for the FPRN RTN software; Leica SpiderNet.
MINIMUM EVALUATION CRITERIA

The following are the evaluation criteria and weighting factors that Project Selection Committee will include, but are not limited to:

4.1 **FPRN GNSS CORS**

4.1.1 **SENSOR**

4.1.1.1 Signals tracked simultaneously: Carrier Phase full wave length, Code (C/A, P, C Code)

- 4.1.1.1.1 GPS: L1, L2(C), L5
- 4.1.1.1.2 Glonass: L1, L2
- 4.1.1.1.3 Galileo: E1, E5a, E5b, E5a+b (Alt-BOC)
- 4.1.1.1.4 SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS)

4.1.1.2 Independent code and phase measurements of all frequencies.

4.1.1.3 Full control and configuration of the receiver via the SpiderNet interface. Web interface will be considered secondary means of control.

4.1.1.4 Fully configurable to provide data streaming rates to 20Hz.

4.1.1.5 Ports/Connections (Minimum Acceptable)

- 4.1.1.5.1 External Oscillator
- 4.1.1.5.2 PPS
- 4.1.1.5.3 Serial
 - 4.1.1.5.3.1 ≥ 1 RS232 LEMO
- 4.1.1.5.4 Ethernet
 - 4.1.1.5.4.1 Ruggedized, Integrated RJ45

4.1.1.6 Compliance with ISO9022-10-08, ISO9022-11-special, MIL STD 810F – 502.4-II, MIL STD 810F – 501.4-II temperature ranges

- 4.1.1.6.1 -40° C to +65° C (storage)
- 4.1.1.6.2 -40° C to +80° C (operating)

4.1.1.7 Humidity: 100%, compliance with ISO9022-13-06, ISO9022-12-04 and MIL STD 810F – 507.4-I

4.1.1.8 Vibration: ISO9022-36-08 and MIL STD 810F – 514.5-Cat.24

4.1.1.9 IP67 Protected against temporary submersion into water (max. depth 1 m)

4.1.2 **ANTENNA**

4.1.2.1 GNSS Choke Ring

4.1.2.1.1 Signals Supported

- 4.1.2.1.1.1 GPS: L1/L2/L2C/L5
- 4.1.2.1.1.2 GLONASS: L1/L2/L3
- 4.1.2.1.1.3 Galileo: L1/E5a/E5b/E6/AltBOC
- 4.1.2.1.1.4 SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS)

4.1.2.1.2 Environmental

- 4.1.2.1.2.1 Compliance FCC, CE
- 4.1.2.1.2.2 Shock MIL-STD-810F, 516.5
- 4.1.2.1.2.3 Dust Ingress IEC-605929 IPX6 Salt Fog IEC-68-2-11
- 4.1.2.1.2.4 Water Ingress IEC-60529 IPX6 and IPX7
- 4.1.2.1.2.5 Resistance to Corrosion, IEC-60950-22
- 4.1.2.1.2.6 Humidity ISO-9022-13-06, 100% non-condensing
- 4.1.2.1.2.7 Temperature
 - 4.1.2.1.2.7.1 Operating -55° C to +85° C
 - 4.1.2.1.2.7.2 Storage -55° C to +90° C

4.1.2.1.3 Phase Center Offset <2mm
4.1.3 SOFTWARE

4.1.3.1 Leica GeoSystems SpiderNet Maintenance

4.1.3.2 If proposing alternative solution, the software must:

4.1.3.2.1 Software Environment

4.1.3.2.1.1 Servers run as services on Microsoft® Windows™ operating systems

4.1.3.2.1.2 Distributed server architecture.

4.1.3.2.2 Site/Station Management

4.1.3.2.2.1 Full receiver control and status monitoring of single and multiple stations.

4.1.3.2.2.2 Reference Station communication methods

4.1.3.2.2.2.1 TCP/IP/Ntrip

4.1.3.2.2.2.2 Access Server/Phone modems

4.1.3.2.2.2.3 Radio modems

4.1.3.2.3 Automatic data analysis, monitoring and reporting.

4.1.3.2.4 Internal Data Processing

4.1.3.2.4.1 RTK

4.1.3.2.4.2 Post Processed

4.1.3.2.5 Event Email and messaging.

4.1.3.2.6 Static Data Management

4.1.3.2.7 Automatic RAW, RINEX, Compact RINEX data management, data compression, quality control and FTP distribution for standard CORS applications.

4.1.3.2.8 Create multiple simultaneous file products

4.1.3.2.9 Automatic validation of raw data for quality and completeness.

4.1.3.2.10 Real-Time Data Management

4.1.3.2.10.1 Single site RTK and DGNSS

4.1.3.2.10.2 Nearest site RTK and DGNSS

4.1.3.2.10.3 Network RTK and DGNSS

4.1.3.2.10.4 Full Network Processing

4.1.3.2.10.4.1 Ionospheric

4.1.3.2.10.4.2 Tropospheric

4.1.3.2.10.5 RTK/DGNSS data distribution through proxy server

4.1.3.2.10.6 Broadcast via standard TCP/IP

4.1.3.2.10.7 Broadcast via NTRIP Services

4.1.3.2.10.7.1 Caster

4.1.3.2.10.7.2 Client

4.1.3.2.10.8 Standard RTK formats

4.1.3.2.10.8.1 RTCM 2.x/3.x

4.1.3.2.10.8.2 Leica proprietary

4.1.3.2.10.8.3 CMR/CMR+

4.1.3.2.10.9 Standard Network RTK Types

4.1.3.2.10.9.1 FKP (RTCM 2.x/3.x)

4.1.3.2.10.9.2 VRS (All Formats)

4.1.3.2.10.9.3 MAX (All Formats)

4.1.3.2.10.9.4 iMAX (All Formats)

4.1.3.2.11 Web Application/Portal

4.1.3.2.11.1 Integrated
4.1.3.2.11.2 Scalable
4.1.3.2.11.3 RINEX Distribution
 4.1.3.2.11.3.1 Single file
 4.1.3.2.11.3.2 Job Based
 4.1.3.2.11.3.3 Scalable Epochs
4.1.3.2.12 Integrated Site Overview
4.1.3.2.13 User Online Positioning Service

4.2 DISTRICT GNSS ROVER

4.2.1 ROVER SENSOR/ ANTENNA
 4.2.1.1 Signals tracked simultaneously: Carrier Phase full wave length, Code (C/A, P, C Code)
 4.2.1.1.1 GPS: L1, L2(C), L5
 4.2.1.1.2 Glonass: L1, L2
 4.2.1.1.3 Galileo: E1, E5a, E5b, E5a+b (Alt-BOC)
 4.2.1.1.4 SBAS: L1 C/A (EGNOS/MSAS), L1 C/A and L5 (WAAS)
 4.2.1.2 Independent code and phase measurements of all frequencies.
 4.2.1.3 Power
 4.2.1.3.1 External power input 10.0 V to 28 V DC.
 4.2.1.3.2 Rechargeable, removable 7.4 V, 2.4 Ah Lithium-Ion battery in internal battery compartment
 4.2.1.4 Scalable positioning to 20 Hz
 4.2.1.5 . RTCM 2.1, RTCM 2.3, RTCM 3.0, RTCM 3.1 Input and Output
 4.2.1.6 Ports/Connections (Minimum Acceptable)
 4.2.1.6.1 External Oscillator
 4.2.1.6.2 PPS
 4.2.1.6.3 Serial
 4.2.1.6.3.1 >/= 1 RS232 LEMO
 4.2.1.7 Environmental
 4.2.1.7.1 Compliance with ISO9022-10-08, ISO9022-11-special, MIL STD 810F – 502.4-II, MIL STD 810F – 501.4-II temperature ranges
 4.2.1.7.1.1 -40°C to +80°C (storage)
 4.2.1.7.1.2 -40°C to +65°C (operating)
 4.2.1.7.2 Humidity: 100%, compliance with ISO9022-13-06, ISO9022-12-04 and MIL STD 810F – 507.4-I
 4.2.1.7.3 Vibration: ISO9022-36-08 and MIL STD 810F
 4.2.1.7.4 Shock. Non-operating: Designed to survive a 1 m (3.3 ft) pole drop onto concrete.
 4.2.1.7.5 IP67 Protected against temporary submersion into water (max. depth 1 m)
 4.2.1.8

4.2.2 SOFTWARE
 4.2.2.1 Leica GeoSystems LGO Pro Server License Maintenance
 4.2.2.2 If proposing alternative solution, the software must:
 4.2.2.2.1 Data management
 4.2.2.2.1.1 Manage components for projects, coordinate systems, GPS antennas, report templates
 4.2.2.2.1.2 Flexible Reporting
 4.2.2.2.1.3 HTML-based reporting
 4.2.2.2.1.4 Measurement logs in field book format, reports on averaged coordinates, various processing log files
 4.2.2.2.2 Data Import and Export
4.2.2.2.1 Data import in proprietary and RINEX formats
4.2.2.2.2 Export results in any ASCII format.

4.2.2.2.3 Coordinate transformations
4.2.2.2.3.1 Tools for defining coordinate systems and transforming coordinates from one system to another.
4.2.2.2.3.2 Convert between ellipsoidal and orthometric heights

4.2.2.2.4 GNSS Post Processing
4.2.2.2.4.1 Processes all types of GPS and GLONASS raw data.
4.2.2.2.4.2 Process kinematic GPS and GLONASS raw data.

4.2.2.2.5 Network Adjustment
4.2.2.2.5.1 Rigorous least squares adjustment
4.2.2.2.5.2 Statistical testing identifies blunders and outliers