APPENDIX A –

FDOT STANDARD SPECIFICATIONS
SECTION 102
MAINTENANCE OF TRAFFIC

102-1 Description.
Maintain traffic within the limits of the project for the duration of the construction period, including any temporary suspensions of the work. Construct and maintain detours. Provide facilities for access to residences, businesses, etc., along the project. Furnish, install and maintain traffic control and safety devices during construction. Furnish and install work zone pavement markings for maintenance of traffic (MOT) in construction areas. Provide any other special requirements for safe and expeditious movement of traffic specified in the Plans. MOT includes all facilities, devices and operations as required for safety and convenience of the public within the work zone.

Do not maintain traffic over those portions of the project where no work is to be accomplished or where construction operations will not affect existing roads. Do not obstruct or create a hazard to any traffic during the performance of the work, and repair any damage to existing pavement open to traffic.

Include the cost of any work that is necessary to meet the requirements of the Contract Documents under the MOT pay item, when there is not a pay item provided.

102-2 Materials.
Meet the following requirements:

Bituminous Adhesive ..Section 970
Temporary Retroreflective Pavement Markers...Section 990
Paint ...Section 971
Removable Tape ..Section 990
Glass Spheres ..Section 971
Temporary Traffic Control Device Materials.....Section 990
Retroreflective and Nonreflective Sheeting
for Temporary Traffic Control Devices.............Section 994

102-2.1 Temporary Traffic Control Devices: Use only the materials meeting the requirements of Section 990, Section 994, Design Standards and the Manual on Uniform Traffic Control Devices (MUTCD).

102-2.2 Detour: Provide all materials for the construction and maintenance of all detours.

102-2.3 Commercial Materials for Driveway Maintenance: Provide materials of the type typically used for base, including recycled asphalt pavement material, and having stability and drainage properties that will provide a firm surface under wet conditions.

102-3 Specific Requirements.

102-3.1 Beginning Date of Contractor’s Responsibility: Maintain traffic starting the day work begins on the project or on the first day Contract time is charged, whichever is earlier.

102-3.2 Worksite Traffic Supervisor: Provide a worksite traffic supervisor in accordance with Section 105. Provide the worksite traffic supervisor with all equipment and materials needed to set up, take down, maintain traffic control, and handle traffic-related situations.
Ensure that the worksite traffic supervisor performs the following duties:

1. Performs on site direction of all traffic control on the project.
2. Is on site during all set up and take down, and performs a drive through inspection immediately after set up.
3. Is on site during all nighttime operations to ensure proper MOT.
4. Immediately corrects all safety deficiencies and does not permit minor deficiencies that are not immediate safety hazards to remain uncorrected for more than 24 hours.
5. Is available on a 24 hour per day basis and present within 45 minutes after notification of an emergency situation and is prepared to positively respond to repair the work zone traffic control or to provide alternate traffic arrangements.
6. Conducts daily daytime and weekly nighttime inspections of projects with predominately daytime work activities, and daily nighttime and weekly daytime inspections of projects with predominantly nighttime work activities of all traffic control devices, traffic flow, pedestrian, bicyclist, and business accommodations.

Advise the project personnel of the schedule of these inspections and give them the opportunity to join in the inspection as is deemed necessary. Submit a comprehensive weekly report, using the Department’s currently approved form, to the Engineer detailing the condition of all traffic control devices (including pavement markings) being used. Include assurances in the inspection report that pedestrians are accommodated with a safe, accessible travel path around work sites separated from mainline traffic in compliance with the Americans with Disabilities Act (ADA) Standards for Transportation Facilities, that existing or detoured bicyclist paths are being maintained satisfactorily throughout the project limits, and that existing businesses in work areas are being provided with adequate entrances for vehicular and pedestrian traffic during business hours. Have the worksite traffic supervisor sign the report and certify that all of the above issues are being handled in accordance with the Contract Documents. When deficiencies are found, the worksite traffic supervisor is to note such deficiencies and include the proposed corrective actions, including the date corrected.

The Department may disqualify and remove from the project a worksite traffic supervisor who fails to comply with the provisions of this Section. The Department may temporarily suspend all activities, except traffic, erosion control and such other activities that are necessary for project maintenance and safety, for failure to comply with these provisions.

102-4 Alternative Traffic Control Plan.

The Contractor may propose an alternative traffic control plan (TCP) to the plan presented in the Contract Documents. Have the Contractor’s Engineer of Record sign and seal the alternative plan. Prepare the TCP in conformance with and in the form outlined in the current version of the Department’s Plans Preparation Manual. Indicate in the plan a TCP for each phase of activities. Take responsibility for identifying and assessing any potential impacts to a utility that may be caused by the alternate TCP proposed by the Contractor, and notify the Department in writing of any such potential impacts to utilities.

Engineer’s approval of the alternate TCP does not relieve the Contractor of sole responsibility for all utility impacts, costs, delays or damages, whether direct or indirect, resulting from Contractor initiated changes in the design or construction activities from those in the original Contract Specifications, Design Plans (including TCPs) or other Contract Documents and which effect a change in utility work different from that shown in the Utility Plans, joint project agreements or utility relocation schedules.
The Department reserves the right to reject any alternative TCP. Obtain the Engineer’s written approval before beginning work using an alternate TCP. The Engineer’s written approval is required for all modifications to the TCP. The Engineer will only allow changes to the TCP in an emergency without the proper documentation.

102-5 Traffic Control.

102-5.1 Standards: FDOT Design Standards are the minimum standards for the use in the development of all TCPs. The MUTCD, Part VI is the minimum national standard for traffic control for highway construction, maintenance, and utility operations. Follow the basic principles and minimum standards contained in these documents for the design, application, installation, maintenance, and removal of all traffic control devices, warning devices and barriers which are necessary to protect the public and workers from hazards within the project limits.

102-5.2 Maintenance of Roadway Surfaces: Maintain all lanes that are being used for the MOT, including those on detours and temporary facilities, under all weather conditions. Keep the lanes reasonably free of dust, potholes and rutting. Provide the lanes with the drainage facilities necessary to maintain a smooth riding surface under all weather conditions.

102-5.3 Number of Traffic Lanes: Maintain one lane of traffic in each direction. Maintain two lanes of traffic in each direction at existing four (or more) lane cross roads, where necessary to avoid undue traffic congestion. Construct each lane used for MOT at least as wide as the traffic lanes existing in the area before commencement of construction. Do not allow traffic control and warning devices to encroach on lanes used for MOT.

The Engineer may allow the Contractor to restrict traffic to one-way operation for short periods of time provided that the Contractor employs adequate means of traffic control and does not unreasonably delay traffic. When a construction activity requires restricting traffic to one-way operations, locate the flaggers within view of each other when possible. When visual contact between flaggers is not possible, equip them with 2-way radios, official, or pilot vehicles, or use traffic signals.

102-5.4 Crossings and Intersections: Provide and maintain adequate accommodations for intersecting and crossing traffic. Do not block or unduly restrict any road or street crossing the project unless approved by the Engineer. Before beginning any construction, provide the Engineer the names and phone numbers of persons that can be contacted when signal operation malfunctions.

102-5.5 Access for Residences and Businesses: Provide continuous access to all residences and all places of business.

102-5.6 Protection of the Work from Injury by Traffic: Where traffic would be injurious to a base, surface course, or structure constructed as a part of the work, maintain all traffic outside the limits of such areas until the potential for injury no longer exists.

102-5.7 Flagger: Provide trained flaggers in accordance with Section 105.

102-5.8 Conflicting Pavement Markings: Where the lane use or where normal vehicle or pedestrian paths are altered during construction, remove all pavement markings (paint, tape, thermoplastic, raised pavement markers, etc.) that will conflict with the adjusted vehicle or pedestrian paths. Use of paint to cover conflicting pavement markings is prohibited. Remove conflicting pavement markings using a method that will not damage the surface texture of the pavement and which will eliminate the previous marking pattern regardless of weather and light conditions.
Remove all pavement markings that will be in conflict with “next phase of operation” vehicle pedestrian paths as described above, before opening to vehicle traffic or use by pedestrians.

Cost for removing conflicting pavement markings (paint, tape, thermoplastic, raised pavement markers, etc.) to be included in Maintenance of Traffic. Lump Sum

102-5.9 Vehicle and Equipment Visibility: Equip all pickups and automobiles used on the project with a minimum of one Class 2 amber or white warning light that meets the Society of Automotive Engineers Recommended Practice SAE J595, dated November 1, 2008, or SAE J845, dated December 1, 2007, and incorporated herein by reference. Existing lights that meet SAE J845, dated March, 1992, or SAE J1318, dated April, 1986, may be used to its end of service life. Lights should be unobstructed by ancillary vehicle equipment such as ladders, racks or booms. If the light is obstructed, additional lights will be required. The lights shall be operating when a vehicle is in a work area where a potential hazard exists, when operating the vehicle at less than the average speed for the facility while performing work activities, making frequent stops or called for in the Plans or Design Standards.

Equip all other vehicles and equipment with a minimum of 4 square feet of retroreflective sheeting or flashing lights.

To avoid distraction to motorists, do not operate the lights on the vehicles or equipment when the vehicles are outside the clear zone or behind a barrier.

102-5.10 No Waiver of Liability: Conduct operations in such a manner that no undue hazard results due to the requirements of this Article. The procedures and policies described herein in no way acts as a waiver of any terms of the liability of the Contractor or his surety.

102-6 Detours.

102-6.1 General: Construct and maintain detour facilities wherever it becomes necessary to divert traffic from any existing roadway or bridge, or wherever construction operations block the flow of traffic.

102-6.2 Construction: Plan, construct, and maintain detours for the safe passage of traffic in all conditions of weather. Provide the detour with all facilities necessary to meet this requirement. Where pedestrian facilities are detoured, blocked or closed during the work, provide safe alternate accessible routes through or around the work zone meeting the requirements of the ADA Standards for Transportation Facilities.

When the Plans call for the Department to furnish detour bridge components, construct the pile bents in accordance with the Plans, unless otherwise authorized by the Engineer.

Submit a letter with the following: company name, phone number, office address, project contact person, project number, detour bridge type, bridge length, span length, location and usage time frames, to the Engineer at least 30 calendar days before the intended pick-up date, to obtain the storage facility location and list of components for the project. Upon receipt of letter, the Engineer will, within ten calendar days provide an approved material list to the Contractor and the appropriate Department storage yard.

Provide a letter with an original company seal, identifying the representative with authority to pick up components, to the Engineer at least 10 calendar days before the proposed pick-up date. The Department is not obligated to load the bridge components without this notice. Take responsibility and sign for each item loaded at the time of issuance.
Provide timber dunnage, and transport the bridge components from the designated storage facility to the job site. Unload, erect, and maintain the bridge, then dismantle the bridge and load and return the components to the designated storage facility.

Notify the Engineer in writing at least 10 calendar days before returning the components. Include in this notice the name of the Contractor’s representative authorized to sign for return of the bridge components. The yard supervisor is not obligated to unload the bridge components without this notice.

The Department will provide equipment and an operator at the Department’s storage facility to assist in loading and unloading the bridge components. Furnish all other labor and equipment required for loading and unloading the components.

The Departments representative will record all bridge components issued or returned on the Detour Bridge Issue and Credit Ticket. The tickets must be signed by a Department and a Contractor representative, after loading or unloading each truck to document the quantity and type of bridging issued or returned.

Bind together all bridge components to be returned in accordance with the instructions given by the storage facility. The yard supervisor will repack components that are not packed in compliance with these instructions. Upon request, written packing instructions will be made available to the Contractor, before dismantling of the bridge for return to the Department’s storage facility.

Assume responsibility for any shortage or damage to the bridge components. Monies due the Contractor will be reduced at the rate of $35.00 per hour plus materials for repacking, repairs or replacement of bridge components.

The skid resistance of open steel grating deck on the detour bridge may decrease gradually after opening the bridge to traffic. The Department will furnish a pneumatic floor scabbler machine for roughening the roadway surface of the detour bridge deck. Provide an air compressor at the job site with 200 cubic foot per minute capacity, 90 psi air pressure for the power supply of the machine, and an operator. Transport the scabbler machine to and from the Department’s structures shop. Repair any damage to the scabbler machine caused by operations at no expense to the Department. Perform scabbling when determined necessary by the Engineer. The Department will pay for the cost of scabbling as Unforeseeable Work in accordance with 4-4.

Return the bridge components to the designated storage facility beginning no later than 10 calendar days after the date the detour bridge is no longer needed, the date the new bridge is placed in service, or the date Contract Time expires, whichever is earliest. Return the detour bridging at an average of not less than 20 feet per week. Upon failure to return the bridge components to the Department within the time specified, compensate the Department for the bridge components not returned at the rate of $5.00 per 10 feet, per day, per bridge, for single lane, and $10.00 per 10 feet, per day, per bridge, for dual lane until the bridge components are returned to the Department.

102-6.3 Construction Methods: Select and use construction methods and materials that provide a stable and safe detour facility. Construct the detour facility to have sufficient durability to remain in good condition, supplemented by maintenance, for the entire period that the detour is required.

102-6.4 Removal of Detours: Remove detours when they are no longer needed and before the Contract is completed. Take ownership of all materials from the detour and dispose of
them, except for the materials on loan from the Department with the stipulation that they are returned.

102-6.5 Detours Over Existing Roads and Streets: When the Department specifies that traffic be detoured over roads or streets outside the project area, do not maintain such roads or streets. However, maintain all signs and other devices placed for the purpose of the detour.

102-6.6 Operation of Existing Movable Bridges: The Department will maintain and operate existing movable bridges that are to be removed by the Contractor until such time as they are closed to traffic. During this period, make immediate repairs of any damage to such structures caused by use or operations related to the work at no expense to the Department, but do not provide routine repairs or maintenance. In the event that use or operations result in damage to a bridge requiring repairs, give such repairs top priority to any equipment, material, or labor available.

102-7 Traffic Control Officer.

Provide uniformed law enforcement officers, including marked law enforcement vehicles, to assist in controlling and directing traffic in the work zone when the following types of work is necessary on projects:

1. Directing traffic/overriding the signal in a signalized intersection.
2. When Design Standards, Index No. 619 is used on freeway facilities (interstates, toll roads, and expressways) at nighttime for work within the travel lane.
3. When Design Standards, Index No. 655 Traffic Pacing for overhead work is called for in the Plans or approved by the Engineer.
4. When pulling conductor/cable above an open traffic lane on limited access facilities, when called for in the Plans or approved by the Engineer.
5. When Design Standards, Index No. 625 Temporary Road Closure 5 Minutes or Less is used.

102-8 Driveway Maintenance.

102-8.1 General: Ensure that each residence and business has safe, stable, and reasonable access.

102-8.2 Construction Methods: Place, level, manipulate, compact, and maintain the material, to the extent appropriate for the intended use.

As permanent driveway construction is accomplished at a particular location, the Contractor may salvage and reuse previously placed materials that are suitable for reuse on other driveways.

102-9 Temporary Traffic Control Devices.

102-9.1 Installation and Maintenance: Install and maintain temporary traffic control devices as detailed in the Plans, Index 600 of the Design Standards and when applicable, in accordance with the approved vendor drawings, as provided on the Department’s Qualified Products List (QPL) or the Department’s Approved Products List (APL). Erect the required temporary traffic control devices to prevent any hazardous conditions and in conjunction with any necessary traffic re-routing to protect the traveling public, workers, and to safeguard the work area. Use only those devices that are on the QPL or the APL. Immediately remove or cover any devices that do not apply to existing conditions.

All temporary traffic control devices must meet the requirements of National Cooperative Highway Research Program Report 350 (NCHRP 350) or the Manual for Assessing
Safety Hardware 2009 (MASH) and current FHWA directives. Manufacturers seeking evaluation must furnish certified test reports showing that their product meets all test requirements set forth by NCHRP 350 or the MASH. Manufacturers seeking evaluation of Category I devices for inclusion on the QPL shall include the manufacturer’s self-certification letter. Manufacturer’s seeking evaluation of Category II and Category III devices for inclusion on the QPL shall include the FHWA WZ numbered acceptance letter with attachments and vendor drawings of the device in sufficient detail to enable the Engineer to distinguish between this and similar devices. For devices requiring field assembly or special site preparation, vendor drawings shall include all field assembly details and technical information necessary for proper application and installation and must be signed and sealed by a Professional Engineer registered in the State of Florida. Manufacturers seeking evaluation of Category IV devices for inclusion on the QPL or APL must comply with the requirements of Section 990 and include detailed vendor drawings of the device along with technical information necessary for proper application, field assembly and installation.

Ensure that the QPL or APL number is permanently marked on the device at a readily visible location. Sheet eting used on devices is exempt from this marking requirement.

Notify the Engineer of any scheduled operation which will affect traffic patterns or safety sufficiently in advance of commencing such operation to permit his review of the plan for the proposed installation of temporary traffic control devices.

Ensure an employee is assigned the responsibility of maintaining the position and condition of all temporary traffic control devices throughout the duration of the Contract. Keep the Engineer advised at all times of the identification and means of contacting this employee on a 24 hour basis.

Keep temporary traffic control devices in the correct position, properly directed, clearly visible and clean, at all times. Ensure that all traffic control devices meet acceptable standards as outlined in American Traffic Safety Services Association (ATSSA) “Quality Guidelines for Temporary Traffic Control Devices and Features”. Immediately repair, replace or clean damaged, defaced or dirty devices.

102-9.2 Work Zone Signs: Provide signs in accordance with the Plans and Design Standards. Meet the requirements of 700-1.2.4 and 990-8. Use only approved systems, which includes sign support posts or stands and attachment hardware (nuts, bolts, clamps, brackets, braces, etc.), meeting the vendor requirements specified on the QPL drawings. Attach the sign to the sign support using hardware meeting the manufacturer’s recommendations and as specified in the Design Standards.

Provide Federal Highway Administration’s (FHWA) accepted sign substrate for use with accepted sign stands on the National Highway System (NHS) under the provisions of the NCHRP Report 350 “Recommended Procedures for the Safety Performance Evaluation of Highway Features.”

102-9.3 Business Signs: Provide and place signs in accordance with the Plans and Design Standards, Index No. 600 series. Furnish signs having retroreflective sheeting meeting the requirements of Section 990.

102-9.4 High Intensity Flashing Lights: Furnish Type B lights in accordance with the Plans and Design Standards.

102-9.5 Warning/Channelizing Devices: Furnish warning/channelizing devices in accordance with the Plans and Design Standards.
102-9.5.1 Retroreflective Collars for Traffic Cones: Use collars for traffic cones listed on the QPL that meet the requirements of Section 990. Use cone collars at night designed to properly fit the taper of the cone when installed. Place the upper 6 inch collar a uniform 3-1/2 inches distance from the top of the cone and the lower 4 inch collar a uniform 2 inches distance below the bottom of the upper 6 inch collar. Ensure that the collars are capable of being removed for temporary use or attached permanently to the cone in accordance with the manufacturer’s recommendations. Provide a white sheeting having a smooth outer surface and that has the property of a retroreflector over its entire surface.

102-9.5.2 Barrier Wall (Temporary): Furnish, install, maintain, remove and relocate a temporary barrier wall in accordance with the Plans. Ensure that temporary concrete barrier wall for use on roadway sections, complies with Design Standards, Index Nos. 412, 415 or 414 as specified in the Plans. Ensure that temporary concrete barrier wall for use on bridge and wall sections, complies with Design Standards, Index No 414 as specified in the Plans. Ensure that temporary water filled barrier wall used on roadway sections meets the NCHRP Report 350 criteria or the MASH and is listed on the QPL. Barriers meeting the requirements of Design Standards, Index Nos. 412, 415 or temporary water filled barriers on the QPL will not be accepted as an alternate to barriers meeting the requirements of Design Standards, Index No 414.

102-9.5.3 Glare Screen (Temporary): Use temporary glare screens listed on the QPL that meet the requirements of Section 990. Furnish, install, maintain, remove and relocate glare screen systems in conjunction with temporary barrier wall at locations identified in the Plans.

Ensure the anchorage of the glare screen to the barrier is capable of safely resisting an equivalent tensile load of 600 pounds per foot of glare screen, with a requirement to use a minimum of three fasteners per barrier section.

When glare screen is utilized on temporary barrier wall, warning lights will not be required.

102-9.6 Temporary Crash Cushion (Redirective/Gating): Furnish, install, maintain and subsequently remove temporary crash cushions in accordance with the details and notes shown in the Plans, the Design Standards, and requirements of the pre-approved alternatives listed on the QPL. Maintain the crash cushions until their authorized removal. Repair all attachment scars to permanent structures and pavements after crash cushion removal. Make necessary repairs due to defective material, work, or Contractor operations at no cost to the Department. Restore crash cushions damaged by the traveling public within 24 hours after notification as authorized by the Engineer.

102-9.7 Guardrail (Temporary): Furnish guardrail (temporary) in accordance with the Plans and Design Standards. Meet the requirements of Section 536.

102-9.8 Arrow Board: Furnish arrow boards that meet the requirements of Section 990 as required by the Plans and Design Standards to advise approaching traffic of lane closures or shoulder work. Type B arrow boards may be used on low to intermediate speed (0 mph to 50 mph) facilities or for maintenance or moving operations on any speed facility. Type C arrow boards shall be used for all other operations on high-speed (50 mph and greater) facilities and may be substituted for Type B arrow boards on any speed facility.

102-9.9 Portable Changeable Message Sign (PCMS): Furnish PCMSs that meet the requirements of Section 990 as required by the Plans and Design Standards to supplement other temporary traffic control devices used in work zones.
102-9.10 Portable Regulatory Signs (PRS): Furnish PRSs that meet the requirements of 990 as required by the Plans and Design Standards. Activate portable regulatory signs only during active work activities and deactivate when no work is being performed.

102-9.11 Radar Speed Display Unit (RSDU): Furnish RSDUs that meet the requirements of Section 990 as required by the Plans and Design Standards to inform motorists of the posted speed and their actual speed. Activate the radar speed display unit only during active work activities and deactivate when no work is being performed.

102-9.12 Temporary Signalization and Maintenance: Provide temporary signalization and maintenance at existing, temporary, and new intersections including but not limited to the following:

1. Installation of temporary poles and span wire assemblies as shown in the Plans.
2. Temporary portable traffic signals as shown in the Plans.
3. Adding or shifting signal heads.
4. Trouble calls.
5. Maintaining intersection and coordination timing and preemption devices.

 Restore any loss of operation within 12 hours after notification.

 Provide traffic signal equipment that meets the requirements of the Design Standards and 603-2. The Engineer may approve used signal equipment if it is in acceptable condition. Replacement components for traffic signal cabinet assemblies will be provided by the maintaining agency.

102-9.13 Temporary Traffic Detection and Maintenance: Provide temporary traffic detection and maintenance at existing, temporary, and new signalized intersections. Provide temporary traffic detection equipment listed on the APL. Restore any loss of detection within 12 hours. Ensure 90% accuracy per signal phase, measured at the initial installation and after any lane shifts, by comparing sample data collected from the detection system with ground truth data collected by human observation. Collect the sample and ground truth data for a minimum of five minutes during a peak and five minutes during an off-peak period with a minimum three detections for each signal phase. Perform the test in the presence of the Engineer.

102-9.14 Truck Mounted Attenuators and Trailer Mounted Attenuators: Furnish, install and maintain only those attenuators that meet the requirements of NCHRP 350 or the MASH.

 Use truck mounted attenuators or trailer mounted attenuators, when called for in the Design Standards. Use attenuators listed on the QPL.

 When attenuators are called for, use either a truck mounted attenuator or a trailer mounted attenuator system designed and installed in accordance with the manufacturers recommendations.

 Equip the attenuator cartridge with lights and reflectors in compliance with applicable Florida motor vehicle laws, including turn signals, dual tail lights, and brake lights.
Ensure that lights are visible in both the raised and lowered positions if the unit is capable of being raised.

Ensure that the complete unit is painted DOT yellow (Fed. Std. 595 b, No. 13538). Stripe the rear facing of the cartridge in the operating position with the alternating 6 inch white and 6 inch safety orange 45 degree striping to form an inverted “V” at the center of the unit and slope down and toward the outside of the unit, in both directions from the center. In the raised position, place at least the same square footage of striping on the bottom of the cartridge as placed on the rear facing cartridge in the open position. Use Type III retroreflectORIZED sheeting for striping.

Attenuators will not be paid for separately. Include the cost of the truck with either a truck mounted attenuator or a trailer mounted attenuator in MOT Lump Sum. Payment includes all costs, including furnishing, maintaining and removal when no longer required, and all materials, labor, tools, equipment and incidentals required for attenuator maintenance.

102-9.15 Temporary Raised Rumble Strip Sets: When called for in the Plans, furnish, install, maintain, remove, and reinstall temporary raised rumble strip sets.

Install the temporary raised rumble strip sets per the manufacturer’s recommendations and in accordance with Design Standards, Index No. 600.

The temporary raised rumble strip may be either a removable polymer striping tape or a molded engineered polymer material.

102-9.16 Automated Flagger Assistance Devices (AFAD): Furnish, install, maintain, remove and relocate AFADs in accordance with the Plans and Design Standards. Position AFADs where they are clearly visible to oncoming traffic and out of the lane of traffic. The devices may be operated either by a single flagger at one end of the traffic control zone, from a central location, or by a separate flagger near each device’s location.

AFADs may be either a remotely controlled Stop/Slow AFAD mounted on either a trailer or a movable cart system, or a remotely controlled Red/Yellow Lens AFAD.

AFADs will not be paid for separately. AFADs may be used as a supplement or an alternate to flaggers in accordance with Index 603. Include the cost for AFADs in Maintenance of Traffic Lump Sum.

102-9.17 Temporary Lane Separator: Furnish, install, maintain, remove and relocate temporary lane separator in accordance with the Plans and Design Standards, Index No. 600.

Anchor the portable temporary lane separator with a removable anchor bolt. Use epoxy on bridge decks where anchoring is not allowed. Remove the epoxy from the bridge deck by hydroblasting or other method approved by the Engineer.

102-10 Work Zone Pavement Marking.

102-10.1 Description: Furnish and install work zone pavement markings for MOT in construction areas and in close conformity with the lines and details shown in the Plans and Design Standards.

Centerlines, lane lines, edge lines, stop bars and turn arrows will be required in work zones prior to opening the road to traffic.

The most common types of work zone pavement markings are painted pavement markings and removable tape. Other types of work zone pavement markings may be identified in the Plans.

102-10.2 Painted Pavement Markings:
102-10.2.1 General: Use painted pavement markings meeting the requirements of Section 710. Use standard waterborne paint unless otherwise identified in the Plans or approved by the Engineer.

102-10.3 Removable Tape:

102-10.3.1 General: Use removable tape listed on the QPL and meeting the requirements of 990-4.

102-10.3.2 Application: Apply removable tape with a mechanical applicator to provide pavement lines that are neat, accurate and uniform. Equip the mechanical applicator with a film cut-off device and with measuring devices that automatically and accumulatively measure the length of each line placed within an accuracy tolerance of plus or minus 2%. Ensure removable tape adheres to the road surface. Removable tape may be placed by hand on short sections, 500 feet or less, if it is done in a neat accurate manner.

102-10.3.3 Retroreflectivity: Apply white and yellow traffic stripes and markings that will attain an initial retroreflectivity of not less than 300 mcd/lx m² for white and contrast markings and not less than 250 mcd/lx m² for yellow markings. Black portions of contrast tapes and black masking tapes must be non-reflective and have a reflectance of less than 5 mcd/lx m². At the end of the six month service life, the retroreflectance of white and yellow removable tape shall not be less than 150 mcd/lx m².

102-10.3.4 Removability: Provide removable tape capable of being removed from bituminous concrete and portland cement concrete pavement intact or in substantially large strips, either manually or by a mechanical roll-up device, at temperatures above 40°F, without the use of heat, solvents, grinding or blasting.

102-10.4 Temporary Retroreflective Pavement Markers (RPM’s): Use markers listed on the QPL and meeting the requirements of 990-5. Apply all markers in accordance with the Design Standards, Index No. 600, prior to opening the road to traffic. Replace markers any time after installation when more than three consecutive markers fail or are missing, at no expense to the Department, in a timely manner, as directed by the Engineer.

102-11 Method of Measurement.

102-11.1 General: Devices installed/used on the project on any calendar day or portion thereof, within the allowable Contract Time, including time extensions which may be granted, will be paid for at the Contract unit price for the applicable pay item, except those paid for as Lump Sum.

102-11.2 Traffic Control Officers: The quantity to be paid for will be at the Contract unit price per hour (4 hour minimum) for the actual number of officers certified to be on the project site, including any law enforcement vehicles and all other direct and indirect costs. Payment will be made only for those traffic control officers specified in the Plans and authorized by the Engineer.

102-11.3 Special Detours: When a detour facility is specifically detailed in the Plans, or is otherwise described or detailed as a special item, and an item for separate payment is included in the proposal, the work of constructing, maintaining, and subsequently removing such detour facilities will be paid for separately. Traffic control devices, warning devices, barriers, signing, and pavement markings for special detours will also be paid for separately.

When the Plans show more than one detour, each detour will be paid for separately, at the Contract lump sum price for each.

Where a separate item for a specific detour facility is included in the proposal, payment will be made under special detour.
102-11.4 Commercial Material for Driveway Maintenance: The quantity to be paid for will be the certified volume, in cubic yards, of all materials authorized by the Engineer, acceptably placed and maintained for driveway maintenance. The volume, which is authorized to be reused, and which is acceptably salvaged, placed, and maintained in other designated driveways will be included again for payment.

102-11.5 Work Zone Signs: The number of temporary post-mounted signs (temporary regulatory, warning and guide) certified as installed/used on the project will be paid for at the Contract unit price for work zone signs. When multiple signs are located on single or multiple posts, each sign panel will be paid individually. Signs greater than 20 square feet and detailed in the Plans will be paid for under Lump Sum MOT.

Temporary portable signs (excluding mesh signs) and vehicular mounted signs will be included for payment under work zone signs, only if used in accordance with the Design Standards.

102-11.6 Business Signs: The number of business signs certified as installed/used on the project will be paid for at the Contract unit price for business signs.

102-11.7 High Intensity Flashing Lights: The number of high intensity flashing lights (Type B) certified as installed/used on the project will be paid for at the Contract unit price for high intensity flashing lights (temporary - Type B).

102-11.8 Channelizing Devices: The number of Type I, Type II, direction indicator barricade, Type III, vertical panel, drum and longitudinal channelizing devices certified as installed/used on the project meeting the requirements of Design Standards, Index No. 600 and have been properly maintained will be paid for at the Contract unit prices for barricade (temporary). Payment will be made for each channelizing device that is used to delineate trailer mounted devices. Payment will be made for channelizing devices delineating portable changeable message signs during the period beginning 14 working days before Contract Time begins as authorized by the Engineer.

102-11.9 Barrier Wall (Temporary): The Contract unit price for barrier wall (temporary) will be full compensation for furnishing, installing, maintaining, and removing the barrier wall. When called for, the Contract unit price for barrier wall (temporary/relocate) will be full compensation for relocating the barrier. The certified quantity to be paid for will be determined by the number of sections times the nominal length of each section.

102-11.10 Lights, Temporary, Barrier Wall Mount: The number of Type C steady burn lights, mounted on barrier wall, certified as installed/used on the project, meeting the requirements of the Design Standards and have been properly maintained will be paid for at the Contract unit price for lights temporary, barrier wall mount.

102-11.11 Glare Screen (Temporary): The certified quantity to be paid for will be determined by the number of sections times the nominal length of each section.

102-11.12 Temporary Crash Cushions:

102-11.12.1 Redirective: The quantity to be paid for will be the number of temporary crash cushions (directive) certified as installed/used and maintained on the project, including object marker.

102-11.12.2 Gating: The quantity to be paid for will be the number of temporary crash cushions (gating) certified as installed/used and maintained on the project, including object marker.
102-11.13 Temporary Guardrail: The quantity to be paid for will be the length, in feet, of temporary guardrail constructed and certified as installed/used on the project. The length of a run of guardrail will be determined as a multiple of the nominal panel lengths.

102-11.14 Arrow Board: The quantity to be paid at the contract unit price will be for the number of arrow boards certified as installed/used on the project on any calendar day or portion thereof within the contract time.

102-11.15 Portable Changeable Message Sign: The quantity to be paid at the Contract unit price will be for the number of portable changeable message signs certified as installed/used on the project on any calendar day or portion thereof within the contract time. Payment will be made for each portable changeable message sign that is used during the period beginning fourteen working days before Contract Time begins as authorized by the Engineer.

102-11.16 Portable Regulatory Signs: The quantity to be paid for will be the number of portable regulatory signs certified as installed/used on the project on any calendar day or portion thereof within the Contract time, will be paid for the Contract unit price for portable regulatory sign.

102-11.17 Radar Speed Display Unit: The quantity to be paid for will be the number of radar speed display units certified as installed/used on the project on any calendar day or portion thereof within the Contract Time, will be paid for the Contract unit price for radar speed display unit.

102-11.18 Temporary Signalization and Maintenance: For existing intersections, the quantity to be paid for will be the number of signalized intersections per day for the full duration of the Contract. For temporary intersections, the quantity to be paid for will be the number of signalized intersections per day for the duration of the temporary intersection. No separate payment will be made for temporary signalization and maintenance at new intersections.

102-11.19 Temporary Traffic Detection and Maintenance: For existing intersections, the quantity to be paid for will be the number of signalized intersections per day beginning the day Contract Time begins and ending the day the permanent detection is operational and the final lane configuration is in place. For temporary and new intersections, the quantity to be paid for will be the number of signalized intersections per day beginning the day the temporary detection is functional and ending the day the permanent detection is operational and the final lane configuration is in place for a new intersection, or, when the detection is removed for a temporary intersection.

102-11.20 Work Zone Pavement Markings: The quantities, furnished and installed, to be paid for will be the length of skip and solid pavement markings, and the area of pavement markings placed as follows:

(a) The total transverse distance, in feet, of skip pavement marking authorized and acceptably applied. The length of actual applied line will depend on the skip ratio of the material used. Measurement will be from the beginning of the first stripe to the end of the last stripe with proper deductions made for unpainted intervals as determined by plan dimensions or stations, subject to 9-1.3.

(b) The net length, in feet, of solid pavement marking authorized and acceptably applied.

(c) The number of directional arrows or pavement messages authorized and acceptably applied.

(d) The number of temporary RPM’s authorized and acceptably applied.
102-11.21 Temporary Raised Rumble Strips: The quantity to be paid for will be the number of temporary raised rumble strip sets certified as installed/used on the project on any calendar day or portion thereof within the Contract Time.

102-11.22 Temporary Lane Separator: The quantity of temporary lane separator to be paid for will be plan quantity, in feet, including drainage gaps, completed and accepted.

102-12 Submittals.

102-12.1 Submittal Instructions: Prepare a certification of quantities, using the Department’s current approved form, for certified MOT payment items for each project in the Contract. Submit the certification of quantities to the Engineer. The Department will not pay for any disputed items until the Engineer approves the certification of quantities.

102-12.2 Contractor’s Certification of Quantities: Request payment by submitting a certification of quantities no later than Twelve O’clock noon Monday after the estimate cut-off date or as directed by the Engineer, based on the amount of work done or completed. Ensure the certification consists of the following:

(a) Contract Number, FPID Number, Certification Number, Certification Date and the period that the certification represents.

(b) The basis for arriving at the amount of the progress certification, less payments previously made and less an amount previously retained or withheld. The basis will include a detail breakdown provided on the certification of items of payment in accordance with 102-13. After the initial setup of the MOT items and counts, the interval for recording the counts will be made weekly on the certification sheet unless there is a change. This change will be documented on the day of occurrence. Some items may necessitate a daily interval of recording the counts.

102-13 Basis of Payment.

102-13.1 Maintenance of Traffic (General Work): When an item of work is included in the proposal, price and payment will be full compensation for all work and costs specified under this Section except as may be specifically covered for payment under other items.

102-13.2 Traffic Control Officers: Price and payment will be full compensation for the services of the traffic control officers.

102-13.3 Special Detours: Price and payment will be full compensation for providing all detour facilities shown in the Plans and all costs incurred in carrying out all requirements of this Section for general MOT within the limits of the detour, as shown in the Plans.

102-13.4 Commercial Materials for Driveway Maintenance: Price and payment will be full compensation for all work and materials specified for this item, including specifically all required shaping and maintaining of driveways.

102-13.5 Work Zone Signs: Price and payment will be full compensation for all work and materials for furnishing signs, supports and necessary hardware, installation, relocating, maintaining and removing signs.

102-13.6. Business Signs: Price and payment will be full compensation for all materials and labor required for furnishing, installing, relocating, maintaining, and removing the signs as well as the cost of installing any logos provided by business owners.

102-13.7 High Intensity Warning Lights: Price and payment will be full compensation for furnishing, installing, operating, relocating, maintaining and removing high intensity flashing lights (Type B).
102-13.8 Channelizing Devices: Prices and payment will be full compensation for furnishing, installing, relocating, maintaining and removing the channelizing devices, including the costs associated with attached warning lights as required.

102-13.9 Barrier Wall (Temporary): Price and payment will be full compensation for furnishing, installing, maintaining, and removing the barrier. When called for, barrier wall (temporary) (relocate) will be full compensation for relocating the barrier.

102-13.10 Lights, Temporary, Barrier Wall Mount: Price and payment will be full compensation for all work and materials for furnishing, installing and maintaining the warning lights mounted on barrier wall. Payment will not be made for lights that are improperly placed or are not working.

102-13.11 Glare Screen (Temporary): Price and payment will be full compensation for furnishing, installing, maintaining, and removing the glare screen certified as installed/used on the project. When called for, glare screen (relocate) will be full compensation for relocating the glare screen.

102-13.12 Temporary Crash Cushion (Redirective/Gating): Price and payment will be full compensation for furnishing, installing, maintaining and subsequently removing such crash cushions.

102-13.13 Temporary Guardrail: Price and payment will be full compensation for furnishing all materials required for a complete installation, including end anchorage assemblies and any end connections to other structures and for installing, maintaining and removing guardrail.

102-13.14 Arrow Board: Price and payment will be full compensation for furnishing, installing, operating, relocating, maintaining and removing arrow boards.

102-13.15 Portable Changeable Message Sign: Price and payment will be full compensation for furnishing, installing, operating, relocating, maintaining and removing portable changeable message signs.

102-13.16 Portable Regulatory Signs: Price and payment will be full compensation for furnishing, installing, relocating, maintaining and removing a completely functioning system as described in these Specifications portable regulatory signs. Price and payment will be full compensation for furnishing, installing, operating, relocating, maintaining and removing portable regulatory signs.

Payment will include all labor, materials, incidentals, repairs and any actions necessary to operate and maintain the unit at all times that work is being performed or traffic is being affected by construction and/or MOT operations.

102-13.17 Radar Speed Display Unit: Price and payment will be made only for a completely functioning system as described in these specifications. Payment will include all labor, hardware, accessories, signs, and incidental items necessary for a complete system. Payment will include any measurements needed to insure that the unit conforms to all specification requirements.

Payment will include all labor, materials, incidentals, repairs and any actions necessary to operate and maintain the unit at all times that work is being performed or traffic is being affected by construction and/or MOT operations. Price and payment will be full compensation for furnishing, installing, operating, relocating, maintaining and removing radar speed display unit.

102-13.18 Temporary Signalization and Maintenance: Price and payment will constitute full compensation for furnishing, installing, operating, maintaining and removing...
temporary traffic control signals including all equipment and components necessary to provide an operable traffic signal. Payment will be withheld for each day at each intersection where the temporary signalization is not operational within 12 hours after notification.

102-13.19 Temporary Traffic Detection and Maintenance: Price and payment will constitute full compensation for furnishing, installing, operating, maintaining and removing temporary traffic detection including all equipment and components necessary to provide an acceptable signalized intersection. Take ownership of all equipment and components. Payment will be withheld for each day at each intersection where the temporary detection is not operational within 12 hours after notification.

102-13.20 Temporary Raised Rumble Strips: Price and payment will be full compensation for all work and materials described in this Section, including all cleaning and preparing of surfaces, disposal of all debris, furnishing of all materials, application, curing, removal, reinstalling and protection of all items, protection of traffic, furnishing of all tools, machines and equipment, and all incidentals necessary to complete the work.

102-13.21 Work Zone Pavement Markings: Price and payment will be full compensation for all work specified including, all cleaning and preparing of surfaces, furnishing of all materials, application, curing and protection of all items, protection of traffic, furnishing of all tools, machines and equipment, and all incidentals necessary to complete the work. Final payment will be withheld until all deficiencies are corrected.

Removable tape may be substituted for work zone paint at no additional cost to the Department.

Payment for temporary RPMs used to supplement line markings will be paid for under temporary retroreflective pavement markers. Install these markers as detailed in the Design Standards.

102-13.22 Temporary Lane Separator: Price and payment will be full compensation for all work specified in this Section

102-13.23 Payment Items: Payment will be made under:

<table>
<thead>
<tr>
<th>Item No. 102-</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>Maintenance of Traffic - lump sum.</td>
</tr>
<tr>
<td>2-</td>
<td>Special Detour - lump sum.</td>
</tr>
<tr>
<td>3-</td>
<td>Commercial Material for Driveway Maintenance - per cubic yard.</td>
</tr>
<tr>
<td>14-</td>
<td>Traffic Control Officer - per hour.</td>
</tr>
<tr>
<td>60-</td>
<td>Work Zone Sign - per each per day.</td>
</tr>
<tr>
<td>61-</td>
<td>Business Sign - each.</td>
</tr>
<tr>
<td>71-</td>
<td>Barrier Wall - per foot.</td>
</tr>
<tr>
<td>75-</td>
<td>Temporary Lane Separator - per foot.</td>
</tr>
<tr>
<td>94-</td>
<td>Glare Screen - per foot.</td>
</tr>
<tr>
<td>73-</td>
<td>Guardrail (Temporary) - per foot.</td>
</tr>
<tr>
<td>74-</td>
<td>Barricade (Temporary) - per each per day.</td>
</tr>
<tr>
<td>76-</td>
<td>Arrow Board - per each per day.</td>
</tr>
<tr>
<td>77-</td>
<td>High Intensity Flashing Lights (Temporary - Type B) - per each per day.</td>
</tr>
<tr>
<td>78-</td>
<td>Temporary Retroreflective Pavement Markers - each.</td>
</tr>
<tr>
<td>79-</td>
<td>Lights, Temporary, Barrier Wall Mount - per each per day.</td>
</tr>
<tr>
<td>81-</td>
<td>Crash Cushion (Gate) (Temporary) - per location.</td>
</tr>
<tr>
<td>89-</td>
<td>Crash Cushion (Redirective) (Temporary) - per location.</td>
</tr>
<tr>
<td>Item No.</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>102-99-</td>
<td>Portable Changeable Message Sign (Temporary) - per each per day</td>
</tr>
<tr>
<td>102-104-</td>
<td>Temporary Signalization and Maintenance - per intersection per day</td>
</tr>
<tr>
<td>102-107-</td>
<td>Temporary Traffic Detection and Maintenance - per intersection per day</td>
</tr>
<tr>
<td>102-150-</td>
<td>Portable Regulatory Sign - per each per day</td>
</tr>
<tr>
<td>102-150-</td>
<td>Radar Speed Display Unit - per each per day</td>
</tr>
<tr>
<td>102-910-</td>
<td>Temporary Raised Rumble Strip Set - per set per day</td>
</tr>
<tr>
<td>102-911-</td>
<td>Removable Tape (White/Black) - per foot</td>
</tr>
<tr>
<td>102-912-</td>
<td>Removable Tape (Yellow) - per foot</td>
</tr>
<tr>
<td>710-</td>
<td>Painted Pavement Markings</td>
</tr>
<tr>
<td>711-</td>
<td>Thermoplastic Traffic Stripes and Markings</td>
</tr>
</tbody>
</table>
105 CONTRACTOR QUALITY CONTROL GENERAL REQUIREMENTS.
(REV 3-7-13) (FA 3-15-13) (1-14)

SECTION 105
CONTRACTOR QUALITY CONTROL GENERAL REQUIREMENTS

105-1 General.

105-1.1 Quality Control Documentation.

105-1.1.1 Submission of Materials Certification and Reporting Test Results:
Provide certifications prior to placement of materials. Report test results at completion of the test and meet the requirements of the applicable Specifications.

105-1.1.2 Database(s): Obtain access to the Department’s databases prior to testing and/or material placement. Database access information is available through the Department’s website. Enter all required and specified documentation and test results in the Department databases.

105-1.1.3 Worksheets: Make available to the Department, when requested, worksheets used for collecting test information. Ensure the worksheets at a minimum contain the following:
 a. Project Identification Number,
 b. Time and Date,
 c. Laboratory Identification and Name,
 d. Training Identification Numbers (TIN) and initials,
 e. Record details as specified within the test method.

105-1.2 Inspections to Assure Compliance with Acceptance Criteria.

105-1.2.1 General: The Department is not obligated to make an inspection of materials at the source of supply, manufacture, or fabrication. Provide the Engineer with unrestricted entry at all times to such parts of the facilities that concern the manufacture, fabrication, or production of the ordered materials. Bear all costs incurred in determining whether the material meets the requirements of these Specifications.

105-1.2.2 Quality Control Inspection: Provide all necessary inspection to assure effective Quality Control of the operations related to materials acceptance. This includes but is not limited to sampling and testing, production, storage, delivery, construction and placement. Ensure that the equipment used in the production and testing of the materials provides accurate and precise measurements in accordance with the applicable Specifications. Maintain a record of all inspections, including but not limited to, date of inspection, results of inspection, and any subsequent corrective actions taken. Make available to the Department the inspection records, when requested.

105-1.2.3 Notification of Placing Order: Order materials sufficiently in advance of their incorporation in the work to allow time for sampling, testing and inspection. Notify the Engineer, prior to placing orders for materials.

Submit to the Engineer a fabrication schedule for all items requiring commercial inspection, before or at the preconstruction meeting. These items include, but are not limited to steel bridge components, overhead cantilevered sign supports with cantilevered arms exceeding 41 feet, moveable bridge components or any other item identified as an item requiring commercial inspection in the Contract Documents.
Notify the Engineer at least 30 days before beginning any production and include a production schedule.

105-2 Additional Requirements for Lump Sum Projects.

Prepare and submit to the Engineer a project-specific list of material items and quantities to be used on the project as a Job Guide Schedule in the same format as the current Sampling, Testing, and Reporting Guide 21 calendar days prior to commencement of construction. Provide up-to-date quantities for the items on the Job Guide Schedule to the Engineer with each monthly progress estimate. The Department may not authorize payment of any progress estimate not accompanied by updated Job Guide Schedule quantities. Maintain the Job Guide Schedule throughout the project including the quantity placed since the previous submittal, and total to date quantity and any additional materials placed. Do not commence work activities that require testing until the Job Guide Schedule has been reviewed and accepted by the Engineer. At final acceptance, submit a final Job Guide Schedule that includes all materials used on the project in the same format as the monthly reports.

105-3 Quality Control Program.

105-3.1 General: Certain operations require personnel with specific qualifications. Certain materials require production under an approved Quality Control (QC) Plan to ensure that these materials meet the requirements of the Contract Documents. Applicable materials include hot mix asphalt, Portland cement concrete (Structural), earthwork, cementitious materials, timber, steel and miscellaneous metals, galvanized metal products, prestressed and/or precast concrete products and drainage products. For all applicable materials included in the Contract, submit a QC Plan prepared in accordance with the requirements of this Section to the Engineer. Do not incorporate any of these materials into the project prior to the Engineer’s approval of the QC Plan.

Steel and Miscellaneous Metal products, including aluminum, are defined as the metal components of bridges, including pedestrian and moveable bridges, overhead and cantilevered sign supports, ladders and platforms, bearings, end wall grates, roadway gratings, drainage items, expansion joints, roadway decking, shear connectors, handrails, galvanized products, fencing, guardrail, light poles, high mast light poles, standard mast arm assemblies and Monotube assemblies, stay in-place forms, casing pipe, strain poles, fasteners, connectors and other hardware.

When accreditation or certification is required, make supporting documents from the two previous inspections performed by the accrediting or certifying agency available to the Department upon request.

Obtain Department approval prior to beginning production. Meet and maintain the approved Quality Control Program requirements at all times. Production and construction of these products without the Department’s prior approval of a Quality Control Program may result in rejection of the products. Continued approval will be subject to satisfactory results from Department evaluations, including the Independent Assurance program. In cases of non-compliance with the approved Quality Control Program, identify all affected material and do not incorporate or supply to the Department projects. The following conditions may result in suspension of a Quality Control Program:

a. Failure to timely supply information required.

b. Repeated failure of material to meet Standard Specification requirements.
c. Failure to take immediate corrective action relative to deficiencies in the performance of the Quality Control Program.

d. Certifying materials that are not produced under an approved Quality Control Program for use on Department projects.

e. Failure to correct any deficiencies related to any requirement of the Quality Control Program, having received notice from the Department, within the amount of time defined in the notice.

105-3.2 Compliance with the Materials Manual.

Producers of Flexible Pipe shall meet the requirements of Section 6.1, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section61.pdf.

Producers of Precast Concrete Pipe shall meet the requirements of Section 6.2, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section62.pdf.

Producers of Precast Concrete Drainage Structures shall meet the requirements of Section 6.3, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section63.pdf.

Producers of Precast/Prestressed Concrete Products shall meet the requirements of Sections 8.1 and 8.3 of the Department’s Materials Manual, which may be viewed at the following URLs: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section81.pdf.

Producers of Precast Prestressed Concrete Products using Self Consolidating Concrete shall meet the requirements of Section 8.4, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section84.pdf.

Producers of Incidental Precast/Prestressed Concrete Products shall meet the requirements of Section 8.2, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section82.pdf.

Producers of Portland Cement Concrete shall meet the requirements of Section 9.2, Volume II of the Department’s Materials Manual, which may be viewed at the following URL: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section92.pdf.

Producers of Structural Steel and Miscellaneous Metal Components shall meet the requirements of Sections 11.1, 11.2, 11.4 and 11.5 of the Department’s Materials Manual, which may be viewed at the following URLs: http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/Files/section111.pdf.

http://www.dot.state.fl.us/specificationsoffice/Implemented/URLinSpecs/files/Section114.pdf

105-3.3 Hot Mix Asphalt, Portland Cement Concrete (Structural), Earthwork, Cementitious Materials, Timber, Steel and Miscellaneous Metals, Galvanized Metal Products, Prestressed and/or Precast Concrete Products and Drainage Products Quality
105-3.4 Prestressed Concrete Quality Control Program: Ensure that prestressed concrete plants participating in the Department’s Acceptance Program are qualified. Obtaining qualification requires a current certification from a Department approved precast prestressed concrete plant certification agency and a Department approved Quality Control Plan, meeting the requirements of this Section. The list of Department approved certification agencies is available on the website of the State Materials Office.

105-3.5 Steel and Miscellaneous Metals Quality Control Program: Ensure that the fabricators of steel and miscellaneous metal products participating in the Department’s Quality Control Acceptance Program are qualified. Obtaining qualification requires an accepted Quality Control Plan, developed in accordance with this Section. A current American Institute for Steel Construction (AISC) certification is a requirement for the Quality Control Acceptance Program of the steel and miscellaneous metal fabricators, provided that AISC certification program is available for the category of the fabrication products.

105-3.6 Producers Quality Control Plan Submittal: Depending on the type of products, the producers shall submit their proposed Quality Control Plans to the State Materials Office or to the District Materials Office, as described below:

105-3.6.1 State Materials Office: Producers of cementitious materials, steel and miscellaneous metals, galvanized metal products, and aggregates must submit their proposed Quality Control Plan to the State Materials Office for review and acceptance.

105-3.6.2 District Materials Office: Producers of hot mix asphalt, Portland cement concrete (Structural), earthwork, timber, prestressed and/or precast concrete products and drainage products must submit their proposed Quality Control Plan to the local District Materials Office for acceptance. Producers located outside the State must contact the State Materials Office for address information of the District Materials Office responsible for the review of the proposed Quality Control Plan.

105-3.7 Quality Control Plan Review and Acceptance: The Department will respond to the producer within 21 calendar days of receipt of the proposed Quality Control Program. The Department may perform evaluation activities to verify compliance with submitted documents prior to acceptance.

If the Quality Control Program must be revised for any reason, including non-compliance, submit the revision to the Department. The Department will respond to the producer within 7 calendar days of receipt of the revised Quality Control Program.

105-3.8 Contractor’s Quality Control Plan: Have an approved Quality Control Plan meeting the requirements of this Section for the transportation, storage, placement, and other related construction operations required by the Contract Documents.

105-4 Contractor Certification of Compliance.

Provide the Engineer with a notarized monthly certification of compliance with the requirements of this Section, to accompany each progress estimate, on a form provided by the Engineer. The Department may not authorize payment of any progress estimate not accompanied by an executed certification document.

Final payment in accordance with 9-8 will not be made until a final notarized certification summarizing all QC exceptions has been submitted.
105-5 Guidelines for Development of the Quality Control Plan.

105-5.1 General: Use the following guidelines for developing the QC Plan. Provide detailed policies, methods and procedures to ensure the specified quality of all applicable materials and related production and field operations. Include other items in addition to these guidelines as necessary.

105-5.2 Personnel:

105-5.2.1 Qualifications: Submit the Training Identification Numbers (TINs) or any other information which will be traceable to the certification agency’s training location and dates for all technicians performing sampling, testing and inspection for both field and laboratory tests. Provide the names of the CTQP certifications and other pertinent certifications held and the expiration dates for each certification for each technician. Include employed and subcontracted technicians.

105-5.2.2 Level of Responsibility: Identify the primary contact for the Department. Identify roles and responsibilities of various personnel involved in the QC process.

105-5.3 Raw Materials:

105-5.3.1 Source: Identify the sources of raw materials. Provide locations and plant or mine numbers when applicable.

105-5.3.2 Certification: Describe methods of verifying compliance of certification with the specifications.

105-5.3.3 Disposition of Failing Materials: Describe the system for controlling non-conforming materials, including procedures for identification, isolation and disposition.

105-5.4 Storage Facilities for Raw Materials: Describe measures and methods, including bedding details, for preventing segregation, contamination and degradation.

105-5.5 Production Equipment: Describe calibration frequencies, maintenance schedule and procedures for production equipment.

105-5.6 Plant Requirements:

105-5.6.1 Plant Identification: For those facilities producing materials listed in Article 105-3, provide the mailing address, physical address including county and X-Y (Latitude and Longitude) coordinates of the plant, telephone and fax numbers, E-mail address, primary contact at the plant, responsible person in charge, facility number provided by the Department, Owner information and Vendor Number and other information as required.

105-5.6.2 Process Control System: Describe the methods and measures established to ensure Contract compliance for the produced materials that are supplemental to the QC sampling and testing program described in the Contract Documents. These methods and measures will include, but are not limited to, inspection schedule, additional sampling and testing, maintenance schedule, etc.

105-5.6.3 Loading and Shipping Control: Describe the methods and measures for preventing segregation, contamination and degradation during loading and shipping operations. Describe the methods established for materials to be in compliance with the specifications at the point of use.

105-5.6.4 Types of Products Generated: Describe the products the plant is approved to produce under Department guidelines.

105-5.7 Other Requirements:
105-5.7.1 Copy of Certification: Attach examples of certifications issued by the plant/Contractor for the products approved by the Department.

105-5.7.2 Statement of Compliance: Include a statement of compliance with all quality requirements set forth by the Department in the Contract Documents and Department manuals.

105-5.7.3 Information on Producers with Accepted Quality Control Programs: Identify the Producers of materials listed in 105-3.1 for the project. Include the Department’s Facility Id number as part of the identification. All producers must have accepted QC Programs and be listed on the Department’s List of Producers with Accepted QC Programs.

105-5.7.4 Describing Documentation Procedure: Identify location of document storage to enable Department review. Include QC charts, qualification/accreditation records, inspection reports, and other pertinent/supporting documents for an approved QC Plan.

105-5.8 Final Manufactured Product - Plant Operations: Describe inspection schedule and methods for identifying defects and non-compliance with the specifications. Describe corrective actions and methods to resolve them.

105-5.8.1 Storage: When storage of the produced materials is required and it is not defined in the Contract Documents, describe the methods and duration for storage. Include measures and methods for preventing segregation, contamination and degradation during storage.

105-5.8.2 Disposition of Failing Materials: When not described in the specifications, describe the methods and measures for identifying and controlling the failing materials. Include preventive and corrective measures. Describe disposition of failing materials.

105-5.9 Final Manufactured Product - Field Operations:

105-5.9.1 Transportation: Describe the method of delivery from the point of production/storage to the point of placement.

105-5.9.2 Storage: When storage of the produced materials is required and it is not defined in the Contract Documents, describe the methods and duration for storage. Include measures and methods for preventing segregation, contamination and degradation during storage.

105-5.9.3 Placement: Describe the methods and identify the type of equipment used in incorporation of the materials into the project.

105-5.9.4 Disposition of Failing Materials: When not described in the specifications, describe the methods and measures for identifying and controlling the failing materials. Include preventive and corrective measures. Describe disposition of failing materials.

105-5.10 Testing Laboratories: Identify the laboratories performing testing. Ensure that the testing laboratories comply with the Laboratory Qualification Program requirements of this Section.

105-6 Lab Qualification Program.

Testing Laboratories participating in the Department’s Acceptance Program must have current Department qualification when testing materials that are used on Department projects. In addition, they must have one of the following:

a. Current AASHTO (AAP) accreditation.

b. Inspected on a regular basis per ASTM D 3740 for earthwork, ASTM D 3666 for asphalt and ASTM C 1077 for concrete for test methods used in the Acceptance Program, with all deficiencies corrected, and under the supervision of a Specialty Engineer.

c. Current Construction Materials Engineering Council (CMEC) program accreditation or other independent inspection program accreditation acceptable to the Engineer and equivalent to a. or b. above.
After meeting the criteria described above, submit a Laboratory Qualification Application to the Department. The application is available from the Department’s website. Obtain the Department’s qualification prior to beginning testing. The Department may inspect the laboratory for compliance with the accreditation requirements prior to issuing qualification.

Meet and maintain the qualification requirements at all times. Testing without Department’s qualification may result in a rejection of the test results. Continued qualifications are subject to satisfactory results from Department evaluations, including Independent Assurance evaluations. In case of suspension or disqualification, prior to resumption of testing, resolve the issues to the Department’s satisfaction and obtain reinstatement of qualification. The following conditions may result in suspension of a laboratory’s qualified status:

a. Failure to timely supply required information.
b. Loss of accredited status.
c. Failure to correct deficiencies in a timely manner.
d. Unsatisfactory performance.
e. Changing the laboratory’s physical location without notification to the accrediting agency and the Engineer.
f. Delays in reporting the test data in the Department’s database.
g. Incomplete or inaccurate reporting.
h. Using unqualified technicians performing testing.

Should any qualified laboratory falsify records, the laboratory qualification will be subject to revocation by the Engineer. Falsification of project-related documentation will be subject to further investigation and penalty under state and federal laws.

It is prohibited for any contract laboratory or staff to perform Contractor Quality Control testing and any other Acceptance Program testing on the same contract.

105-7 Quality Control Plan Submittal.

Submit the QC Plan to the Engineer for approval within 21 calendar days after the Contract Award. The Engineer will review the QC Plan and respond to the Contractor within 21 calendar days of receipt.

If at any time the Contractor is not in compliance with the approved QC Plan, or a part thereof, affected portions of the plan will be disapproved. Cease work in the affected operation(s) and submit a revision to the Engineer. If the QC Plan, or a part thereof, must be revised, submit the revision to the Engineer. The Engineer will review the revision and respond within seven calendar days of receipt.

Continue to work on operations that are still in compliance with the approved sections of the QC Plan.

105-8 Personnel Qualifications.

105-8.1 General: Provide qualified personnel for sampling, testing and inspection of materials and construction activities. Ensure that qualifications are maintained during the course of sampling, testing and inspection.

Construction operations that require a qualified technician must not begin until the Department verifies that the technician is on the CTQP list of qualified technicians. The CTQP lists are subject to satisfactory results from periodic Independent Assurance evaluations.

105-8.2 QC Manager: Designate a QC Manager who has full authority to act as the Contractor’s agent to institute any and all actions necessary for the successful implementation of the QC Plan. The QC Manager must speak and understand English. The QC Manager must be
on-site at the project on a daily basis or always available upon four hours notice to administer the QC Plan. This includes administering, implementing, monitoring, and as necessary, adjusting the processes to ensure compliance with the Contract Documents. Ensure that the QC Manager is qualified as such through the Construction Training/Qualification Program.

Under the direction of the QC Manager, and using Department’s standard forms provided by the Engineer, summarize the daily QC activities including testing and material sampling. Since erasures are strictly prohibited on all reports and forms, use blue or colored ink. Do not use black ink. If manual corrections to original data are necessary, strike through, correct, and date the entry, including the initials of the person making the correction. Make copies of the completed forms available for the Department to review daily unless otherwise required in the specifications. Ensure that the QC test data is entered into the Department’s database on a daily basis. Maintain all QC related reports and documentation for a period of three years from final acceptance of the project. Make copies available for review by the Department upon request.

105-8.3 Worksite Traffic Supervisor: Provide a Worksite Traffic Supervisor who is responsible for initiating, installing, and maintaining all traffic control devices as described in Section 102 and in the Contract Documents. Ensure that the Worksite Traffic Supervisor is certified in the advanced training category by a Department approved training Provider. Approved Providers will be posted on the Department’s website at the following URL address: http://www.dot.state.fl.us/rrdesign/MOT/MOT.shtm Use approved alternate Worksite Traffic Supervisors when necessary.

105-8.4 Flagger: Provide trained flaggers to direct traffic where one-way operation in a single lane is in effect and in other situations as required. The Worksite Traffic Supervisor or others as approved by the Department will provide training for flaggers.

105-8.5 Earthwork Quality Control Personnel:
105-8.5.1 Earthwork Level I: Ensure the technician who samples soil and earthwork materials from the roadway project, takes earthwork moisture and density readings, and records those data in the Density Log Book holds a Construction Training and Qualification Program (CTQP) Earthwork Construction Inspection Level I qualification.

105-8.5.2 Earthwork Level II: Ensure the technician responsible for determining the disposition of soil and earthwork materials on the roadway, and for interpreting and meeting Contract Document requirements holds a CTQP Earthwork Construction Inspection Level II qualification.

105-8.6 Asphalt Quality Control Personnel:
105-8.6.1 Plant Technicians: For asphalt plant operations, provide a QC technician, qualified as a CTQP Asphalt Plant Level II technician, available at the asphalt plant at all times when producing mix for the Department. Perform all asphalt plant related testing with a CTQP Asphalt Plant Level I technician. As an exception, measurements of temperature may be performed by someone under the supervision of a CTQP Plant Level II technician.

105-8.6.2 Paving Technicians: For paving operations (with the exception of miscellaneous or temporary asphalt), keep a qualified CTQP Asphalt Paving Level II technician on the roadway at all times when placing asphalt mix for the Department, and perform all testing with a CTQP Asphalt Paving Level I technician. As an exception, measurements of cross-slope, temperature, and yield (spread rate) can be performed by someone under the supervision of a CTQP Paving Level II technician at the roadway.

105-8.6.3 Mix Designer: Ensure all mix designs are developed by individuals who are CTQP qualified as an Asphalt Hot Mix Designer.
105-8.6.4 Documentation: Document all QC procedures, inspection, and all test results and make them available for review by the Engineer throughout the life of the Contract. Identify in the asphalt producer’s Quality Control Plan the Quality Control Manager(s) and/or Asphalt Plant Level II technician(s) responsible for the decision to resume production after a quality control failure.

105-8.7 Concrete QC Personnel:

105-8.7.1 Concrete Field Technician - Level I: Ensure technicians performing plastic property testing on concrete for materials acceptance are qualified CTQP Concrete Field Technicians Level I. Plastic property testing will include but not be limited to slump, temperature, air content, water-to-cementitious materials ratio calculation, and making and curing concrete cylinders. Duties will include initial sampling and testing to confirm specification compliance prior to beginning concrete placements, ensuring timely placement of initial cure and providing for the transport of compressive strength samples to the designated laboratories.

105-8.7.2 Concrete Field Inspector - Level II: Ensure field inspectors responsible for the quality of concrete being placed on major bridge projects are qualified CTQP Concrete Field Inspectors Level II. A Level II Inspector must be present on the jobsite during all concrete placements. Prior to the placement of concrete, the inspector will inspect the element to be cast to ensure compliance with Contract Documents. A Level II Inspector’s duties may include ensuring that concrete testing, inspection, and curing in the field are performed in accordance with the Contract Documents. The QC Inspector will inform the Verification Inspector of anticipated concrete placements and LOT sizes.

105-8.7.3 Concrete Laboratory Technician – Level I: Ensure technicians testing cylinders and recording concrete strength for material acceptance are qualified CTQP Concrete Laboratory Technicians Level I. Duties include final curing, compressive strength testing, and the recording/reporting of all test data.

105-8.8 Supervisory Personnel – Post-Tensioned and Movable Bridge Structures:

105-8.8.1 General: Provide supervisory personnel meeting the qualification requirements only for the post-tensioned and movable bridge types detailed in this Article. Submit qualifications to the Engineer at the pre-construction conference. Do not begin Construction until the qualifications of supervisory personnel have been approved by the Engineer.

105-8.8.2 Proof of License or Certification: Submit a copy of the Professional Engineer license current and in force issued by the state in which registration is held. The license must be for the field of engineering that the construction work involves such as Civil, Electrical or Mechanical. Under certain circumstances Florida registration may be required. Submit a copy of the license issued by the State of Florida for tradesmen that require a license indicating that the license is in force and is current. Submit a copy of the certification issued by the Instrumentation, Systems and Automation Society of America for each Certified Control Systems Technician.

105-8.8.3 Experience Record: Submit the following information for supervisory personnel to substantiate their experience record. The supervisor (project engineer, superintendent/manager or foreman) seeking approval must provide a notarized certification statement attesting to the completeness and accuracy of the information submitted. Provide the following experience information for each individual seeking approval as a supervisor:
Project owner's name and telephone number of an owner's representative, project identification number, state, city, county, highway number and feature intersected.

Provide a detailed description of each bridge construction experience, and the level of supervisory authority during that experience. Report the duration in weeks, as well as begin and end dates, for each experience period.

Provide the name, address and telephone number of an individual that can verify that the experience being reported is accurate. This individual should have been an immediate supervisor unless the supervisor cannot be contacted in which case another individual with direct knowledge of the experience is acceptable.

105-8.8.4 Concrete Post-Tensioned Segmental Box Girder Construction:
Ensure the individuals filling the following positions meet the minimum requirements as follows:

105-8.8.4.1 Project Engineer-New Construction: Ensure the Project Engineer is a registered professional engineer with five years of bridge construction experience. Ensure a minimum of three years of experience is in Segmental Box Girder Construction Engineering and includes a minimum of one year in segmental casting yard operations and related surveying, one year in segment erection and related surveying, including post-tensioning and grouting of longitudinal tendons and a minimum of one year as the Project Engineer in responsible charge of Segmental Box Girder Construction Engineering. Ensure this individual is present at the site of construction, at all times while segmental box girder construction or segment erection is in progress.

105-8.8.4.2 Project Engineer-Repair and Rehabilitation: Ensure the Project Engineer is a registered Professional Engineer with five years of bridge construction experience. Ensure a minimum of three years of experience is in Segmental Box Girder Construction Engineering and includes a minimum of one year of post-tensioning and grouting of longitudinal tendons and a minimum of one year as the Project Engineer in responsible charge of Segmental Box Girder rehabilitation engineering or Segmental Box Girder new construction engineering.

105-8.8.4.3 Project Superintendent/Manager-New Construction: Ensure the Project Superintendent/Manager has a minimum of ten years of bridge construction experience or is a registered professional engineer with five years of bridge construction experience. Ensure that a minimum of three years of experience is in Segmental Box Girder construction operations and includes a minimum of one year in the casting yard operations and related surveying, one year in segment erection and related surveying including post-tensioning and grouting of longitudinal tendons and a minimum of one year as the Project Superintendent/Manager in responsible charge of Segmental Box Girder construction operations. Ensure this individual is present at the site of construction, at all times while segmental box girder construction or segment erection is in progress.

105-8.8.4.4 Project Superintendent/Manager-Repair and Rehabilitation: Ensure the Project Superintendent/Manager has a minimum of five years of bridge construction experience or is a registered professional engineer with three years of bridge construction experience. Ensure that a minimum of two years of experience is in Segmental Box Girder construction operations and includes a minimum of one year experience performing post-tensioning and grouting of longitudinal tendons and a minimum of one year as the Project Superintendent/Manager in responsible charge of Segmental Box Girder rehabilitation operations or Segmental Box Girder new construction operations.

105-8.8.4.5 Foreman-New Construction: Ensure that the Foreman has a minimum of five years of bridge construction experience with two years of experience in
Segmental Box Girder Operations and a minimum of one year as the foreman in responsible charge of Segmental Box Girder new construction Operations. Ensure this individual is present at the site of construction, at all times while segmental box girder construction or segment erection is in progress.

105-8.8.4.6 Foreman - Repair and Rehabilitation: Ensure the Foreman has a minimum of five years of bridge construction experience with two years of experience in Segmental Box Girder Operations and a minimum of one year as the foreman in responsible charge of Segmental Box Girder rehabilitation operations or Segmental Box Girder new construction operations.

105-8.8.4.7 Geometry Control Engineer/Manager: Ensure that the Geometry Control Engineer/Manager for construction of cast-in-place box segments is a Registered Professional Engineer with one year of experience, a non-registered Engineer with three years of experience or a Registered Professional Land Surveyor with three years of experience in geometry control for casting and erection of cast-in-place box segments. Credit for experience in cast-in-place box girder geometry control will be given for experience in precast box girder geometry control but not vice versa.

Ensure that the Geometry Control Engineer/Manager for precast box segments is a Registered Professional Engineer with one year of experience or non-registered with three years of experience in casting yard geometry control of concrete box segments.

The Geometry Control Engineer/Manager must be responsible for and experienced at implementing the method for establishing and maintaining geometry control for segment casting yard operations and segment erection operations and must be experienced with the use of computer programs for monitoring and adjusting theoretical segment casting curves and geometry. This individual must be experienced at establishing procedures for assuring accurate segment form setup, post-tensioning duct and rebar alignment and effective concrete placement and curing operations as well as for verifying that casting and erection field survey data has been properly gathered and recorded. Ensure this individual is present at the site of construction, at all times while cast-in-place segmental box girder construction is in progress or until casting yard operations and segment erection is complete.

105-8.8.4.8 Surveyor: Ensure that the Surveyor in charge of geometry control surveying for box segment casting and/or box segment erection has a minimum of one year of bridge construction surveying experience. Ensure this individual is present at the site of construction, at all times while segmental box girder construction or segment erection is in progress.

105-8.8.5 Movable Bridge Construction: Ensure the individual filling the following positions meet the minimum requirements as follows:

105-8.8.5.1 Electrical Journeyman: Ensure the Electrical Journeyman holds, an active journeyman electrician’s license and has at least five years experience in industrial electrical work, or is a Certified Control Systems Technician. A Certified Control Systems Technician will not be permitted to perform electrical power work including, but not limited to, conduit and wire-way installation or power conductor connection. Ensure the electrical journeyman has successfully completed the installation of one similar movable bridge electrical system during the last three years.

105-8.8.5.2 Control Systems Engineer and Mechanical Systems Engineer: Ensure the Control Systems Engineer and Mechanical Systems Engineer are both
registered Professional Engineers with a minimum of 10 years supervisory experience each in movable bridge construction. Ensure the Engineers have working knowledge of the movable bridge leaf motion control techniques, mechanical equipment and arrangements specified for this project. Ensure that each Engineer has been in responsible control of the design and implementation of at least three movable bridge electrical control and machinery systems within the past 10 years of which, at least one of the three bridges was within the last three years. Ensure that a minimum of one of the three bridge designs incorporated the same type of leaf motion control and machinery systems specified for this project.

105-8.8.6 Concrete Post-Tensioned Other Than Segmental Box Girder Construction: Ensure the individual filling the following positions meet the minimum requirements as follows:

105-8.8.6.1 Project Engineer: Ensure the Project Engineer is a registered Professional Engineer with five years of bridge construction experience. Ensure that a minimum of three years of experience is in concrete post-tensioned construction. Ensure that the three years of experience includes experience in girder erection, safe use of cranes, stabilization of girders; design of false work for temporary girder support, post-tensioning and grouting operations, and a minimum of one year as the Project Engineer in responsible charge of post-tensioning related engineering responsibilities.

105-8.8.6.2 Project Superintendent/Manager: Ensure the Project Superintendent/Manager has a minimum of ten years of bridge construction experience or is a registered Professional Engineer with five years of bridge construction experience and has a minimum of three years of supervisory experience in girder erection, safe use of cranes, stabilization of girders; design of falsework for temporary girder support post-tensioning, grouting operations and a minimum of one year as the Project Superintendent/Manager in responsible charge of post-tensioning related operations.

105-8.8.6.3 Foreman: Ensure the Foreman has a minimum of five years of bridge construction experience with two years of experience in post-tensioning related operations and a minimum of one year as the foreman in responsible charge of post-tensioning related operations.

105-8.8.7 Post-Tensioning (PT) and Grouting Personnel Qualifications: Perform all stressing and grouting operations in the presence of the Engineer and with personnel meeting the qualifications of this article. Coordinate and schedule all PT and grouting activities to facilitate inspection by the Engineer.

105-8.8.7.1 Post-Tensioning: Perform all PT field operations under the direct supervision of a Level II CTQP Qualified PT Technician who must be present at the site of the post-tensioning work during the entire duration of the operation. For the superstructures of bridges having concrete post-tensioned box or I girder construction, provide at least two CTQP qualified PT technicians, Level I or II, on the work crew. The supervisor of the work crew, who must be a Level II CTQP Qualified PT Technician, may also be a work crew member, in which case, the supervisor shall count as one of the two CTQP qualified work crew members. For PT operations other than the superstructures of post-tensioned box or I girder construction, perform all PT operations under the direct supervision of a Level II CTQP Qualified PT Technician who must be present at the site of the PT work during the entire duration of the operation. Work crew members are not required to be CTQP qualified.

105-8.8.7.2 Grouting: Perform all grouting field operations under the direct supervision of a Level II CTQP Qualified Grouting Technician who must be present at the
site of the grouting work during the entire duration of the operation. For the superstructures of bridges having concrete post-tensioned box or I girder construction, provide at least two CTQP qualified grouting technicians, Level I or II, on the work crew. The supervisor of the work crew, who must be a Level II CTQP Qualified Grouting Technician, may also be a work crew member, in which case, the supervisor shall count as one of two CTQP qualified work crew members. For grouting operations other than the superstructures of post-tensioned box or I girder construction, perform all grouting operations under the direct supervision of a Level II CTQP Qualified Grouting Technician who must be present at the site of the grouting work during the entire duration of the operation. Work crew members are not required to be CTQP qualified.

Perform all vacuum grouting operations under the direct supervision of a crew foreman who has been trained and has experience in the use of vacuum grouting equipment and procedures. Submit the crew foreman's training and experience records to the Engineer prior to performing any vacuum grouting operation.

105-8.8.8 Failure to Comply with Bridge Qualification Requirements: Make an immediate effort to reestablish compliance. If an immediate effort is not put forth as determined by the Engineer, payment for the bridge construction operations requiring supervisors to be qualified under this Specification will be withheld up to 60 days. Cease all bridge construction and related activities (casting yard, etc.) if compliance is not met within 60 days, regardless of how much effort is put forth. Resume bridge construction operations only after written approval from the Engineer stating that compliance is reestablished.

105-8.9 Prestressed Concrete Plant Quality Control Personnel: Ensure each prestressed concrete plant has an onsite production manager, an onsite Plant Quality Control Manager, a Plant engineer, and adequate onsite QC inspectors/technicians to provide complete QC inspections and testing.

Ensure the Plant Manager for QC has at least five years of related experience and a current PCI QC personnel Level III certification and a certificate of completion of Section 450 Specification examination. Ensure that the QC inspector/technician has current PCI QC Technician/Inspector Level II certification and a certificate of completion of Section 450 Specification examination.

Ensure that the batch plant operators of the ready mixed concrete batch plants meet the requirements of Section 9.2 of the Materials Manual. Ensure that the batch plant operators of the onsite centrally mixed concrete plants meet the requirements of 105-8.11.1.4.2.

105-8.10 Signal Installation Inspector: Provide an inspector trained and certified by the International Municipal Signal Association (IMSA) as a Traffic Signal Inspector to perform all signal installation inspections. Use only Department approved signal inspection report forms during the signal inspection activities. Ensure all equipment, materials, and hardware is in compliance with Department Specifications and verify that all equipment requiring certification is listed on the Department’s Approved Product List (APL). Provide the completed signal inspection report form(s), certified by the IMSA Traffic Signal Inspector to the Engineer.

The Department’s approved inspection report forms are available at the following URL: http://www.dot.state.fl.us/trafficoperations/.

105-8.11 Pipe and Precast Concrete Products Manufacturing Facilities Quality Control Personnel:

105-8.11.1 General: Obtain personnel certifications from Department accredited training providers. The list of Department approved courses and their accredited providers is available on the State Materials Office website.
105-8.11.2 Precast Concrete Drainage Structures, Precast Concrete Box Culvert, Precast Concrete Pipe, Incidental Precast Concrete, and Flexible Pipe Manufacturing Facilities Quality Control Personnel:

105-8.11.2.1 Level I Quality Control Inspectors: Ensure that the Level I Inspectors have completed a minimum of a 12-hour, Department approved, Level I QC Inspector training course in the respective work area. As an exception to this, ensure Flexible Pipe Level I QC Inspectors have completed a minimum of an 8-hour, Department approved, Level I QC Flexible Pipe Inspector training course. For Incidental Precast Concrete, as an alternative to the completion of the 12-hour training course, the Department will accept QC personnel meeting the requirements of 105-8.11.2.4.1 and CTQP Concrete Field Technician Level I certification or Precast/Prestressed Concrete Institute (PCI) Quality Control Technician/Inspector Level II certification.

105-8.11.2.2 Level II Quality Control Inspectors: Ensure that Level II Inspectors have completed Department approved Level I QC Inspector training and a minimum of a 5-hour, Department approved, Level II QC Inspector training course in the respective work areas. For Incidental Precast Concrete, as an alternative to the completion of the 5-hour training course, the Department will accept CTQP Concrete Field Technician Level II or PCI Quality Control Level III certifications.

105-8.11.2.3 Plant Quality Control Manager: Ensure that QC Manager has completed Department approved Level II QC Inspector training and has a minimum of 2 years construction related experience in the specific work area.

105-8.11.2.4 Additional Requirements for Quality Control Personnel of Precast Concrete Drainage, Precast Concrete Box Culvert, and Incidental Precast Concrete Manufacturing Facilities:

105-8.11.2.4.1 Testing Personnel: Ensure the personnel performing plastic property tests have ACI Concrete Field Testing Technician-Grade I certification. Ensure the personnel performing laboratory compressive strength testing have ACI Concrete Laboratory Testing Technician-Grade 1 certification or ACI Concrete Strength Testing Technician certification.

105-8.11.2.4.2 Batch Plant Operator: Ensure the concrete batch plant operator is qualified as a CTQP Concrete Batch Plant Operator. As an alternative to CTQP qualification, the Department will accept the completion of a minimum of a 6-hour, Department approved, Batch Plant Operator training course.

105-8.12 Structural Steel and Miscellaneous Metals Fabrication Facility Quality Control Personnel: Ensure each fabrication facility has an onsite production manager, an onsite facility manager for QC, a plant engineer, and on site QC inspectors/technicians to provide complete QC inspections and testing.

Ensure that the Facility Manager for QC and QC inspectors/technicians meet the certification requirements set forth in the latest version of AASHTO/NSBA Steel Bridge Collaboration S 4.1, Steel Bridge Fabrication QC/QA Guide Specification, including the years of experience required in Table 105-5 below. The Facility Manager for QC must meet the requirements of Table 105-5 for every Structural Steel Member Type produced by a plant with QC being managed by the Facility Manager for QC. The Facility Manager for QC will report directly to the plant manager or plant engineer and must not be the plant production manager nor report to or be the subordinate of the plant production manager. QC inspectors/technicians must be the employees of, and must report directly to the Facility Manager for QC.
<table>
<thead>
<tr>
<th>Structural Steel Member Type</th>
<th>Minimum Years of Experience Required</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QC Inspector/Technician</td>
<td>Facility Manager for QC</td>
</tr>
<tr>
<td>Rolled beam bridges</td>
<td>1 year</td>
<td>3 years</td>
</tr>
<tr>
<td>Welded plate girders (I sections, box sections, etc.)</td>
<td>2 years</td>
<td>4 years</td>
</tr>
<tr>
<td>Complex structures, such as trusses, arches, cable stayed bridges, and moveable bridges</td>
<td>3 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Fracture critical (FC) members</td>
<td>3 years</td>
<td>5 years</td>
</tr>
</tbody>
</table>
SECTION 234
SUPERPAVE ASPHALT BASE

234-1 Description.
Construct a Superpave Asphalt Concrete base course as defined in these Specifications. Base course mixes are designated as B-12.5. The Contractor may use a Type SP-12.5 mixture, (Traffic Level B or C) in lieu of a Type B-12.5. The Contractor may substitute a SP 12.5 Traffic Level D or E mixtures in lieu of Type B-12.5 mixtures, not to exceed 500 tons for a project, at no extra cost to the Department, if approved by the Engineer.

234-2 Materials.

234-2.1 General: Use materials that conform to the requirements of Division III. Specific references are as follows:
- Superpave PG Asphalt Binder Section 916
- Coarse Aggregate, Stone, Slag or Crushed Gravel .. Section 901
- Fine Aggregate .. Section 902

234-2.2 Reclaimed Asphalt Pavement (RAP): RAP may be used as a component material of the asphalt mixture provided the requirements of 334-2.3 are met.

234-3 General Composition of Mixture.

234-3.1 General: Compose the asphalt mixture using a combination of aggregate (coarse, fine or mixtures thereof), mineral filler if required, and asphalt binder material. Size, grade and combine the aggregate fractions to meet the grading and physical properties of the mix design. Aggregates from various sources may be combined.

234-3.2 Mix Design: Unless otherwise specified, design the mix such that all requirements for a Type SP-12.5, Traffic Level B or C mixture as specified in Section 334 are met.

234-3.2.1 Gradation Classification: Use a fine mix as defined in 334-3.2.2.1.

234-3.2.2 Aggregate Consensus Properties: Meet the aggregate consensus properties at design as specified in 334-3.2.3. Meet the criteria specified for a depth of top of pavement layer from surface of greater than 4 inches.

234-3.2.3 Mix Design Revisions: Meet the requirements of 334-3.3.

234-4 Contractor’s Process Control.
Meet the requirements of 320-2, 330-2 and 334-4.

234-5 Acceptance of the Mixture.
The mixture will be accepted in accordance with the requirements of 334-5. Use the permissible variations from longitudinal and transverse grades as specified in 200-7.

234-6 Plant, Methods and Equipment.
Meet requirements of Section 320, with the following modifications:

234-6.1 Paving Equipment: A motor grader may be used to spread the first course of multiple course bases when the subgrade will not support the use of a mechanical spreader. The
Engineer will not require mechanical spreading and finishing equipment for the construction of base widening strips less than 6 feet in width.

234-6.2 Compaction Equipment: In areas where standard rollers cannot be accommodated, vibratory rollers supplemented with trucks, motor graders, or other compaction equipment approved by the Engineer may be used.

234-7 Construction Requirements.

234-7.1 General: Meet the General Construction Requirements of Section 330, with the following modifications:

234-7.1.1 Temperature Limitations: Spread the mixture only when the air temperature is at least 40°F. Do not place the material on frozen subgrade.

234-7.1.2 Tack Coat: Unless otherwise authorized by the Engineer, apply a tack coat between successive layers of base material.

234-7.1.3 Thickness of Layers: Construct each course in layers not to exceed 3 inches compacted thickness.

234-8 Thickness Requirements.

234-8.1 General: The total thickness of the Type B asphalt layers will be the plan thickness as shown in the Contract Documents. Before paving, propose a thickness for each individual layer meeting the requirements of this specification, which when combined with other layers (as applicable) will equal the plan thickness. For construction purposes, the plan thickness and individual layer thickness will be converted to spread rate based on the maximum specific gravity of the asphalt mix being used, as well as the minimum density level, as shown in the following equation:

\[
\text{Spread rate (lbs. per square yard)} = t \times G_{\text{mn}} \times 43.3
\]

Where: \(t \) = Thickness (in.) (Plan thickness or individual layer thickness)

\(G_{\text{mn}} \) = Maximum specific gravity from the verified mix design

The weight of the mixture shall be determined as provided in 320-3.2. For target purposes only, spread rate calculations should be rounded to the nearest whole number.

234-8.2 Spread Rate Tolerance: Control the average spread rate on a daily basis to within plus or minus 5% of the target spread rate for the individual layer(s) established by the Engineer. When the average daily spread rate is outside this tolerance from the target, adjust the spread rate to the required value established by the Engineer. The Engineer will periodically verify the spread rate at the job site during the paving operation.

234-8.3 Allowable Deficiencies: The Engineer will allow a maximum deficiency from the specified spread rate for the total thickness as follows:

1. For pavement of a specified thickness of 2-1/2 inches or more: 50 lbs. per square yard
2. For pavement of a specified thickness of less than 2-1/2 inches: 25 lbs. per square yard

234-8.4 Pavement Exceeding Allowable Deficiency in Spread Rate: Where the deficiency in spread rate for the total thickness is: (1) in excess of 50 lbs. per square yard for pavements with a specified thickness of 2-1/2 inches or more, or (2) in excess of 25 lbs. per square yard for pavements with a specified thickness of less than 2-1/2 inches, the Engineer may require removal and replacement at no cost or may require a correction as specified in 234-8.5.
The Engineer may require the Contractor to core the pavement for thickness in order to determine the area of pavement with deficient thickness.

As an exception to the above, the Contractor may leave pavement outside the main roadway in place without compensation when the Engineer allows, even though the deficiency exceeds the tolerance as specified above.

The Department will not compensate the Contractor for any pavement removed or for the work of removing such pavement.

234-8.5 Correcting Deficiency by Adding New Surface Material: In the event the total thickness as determined by the spread rate is excessively deficient as defined above and if approved by the Engineer for each particular location, correct the deficient thickness by adding new surface material and compacting it using a rolling pattern as approved by the Engineer. The Engineer will determine the area to be corrected and the thickness of new material added. Perform all overlaying and compacting at no expense to the Department.

234-9 Method of Measurement.

The quantity to be paid for will be the plan quantity. The pay area will be adjusted based upon the following formula:

\[\text{Pay Area} = \text{Surface Area} \times (\text{Project Average Spread Rate/Specified Spread rate for the Total Thickness}) \]

Where: The project average spread rate is calculated by totaling the arithmetic mean of the average daily spread rate values for each layer, and the specified spread rate for the total thickness is based upon the plan thickness converted to spread rate as defined in 234-8.1.

The pay area shall not exceed 105% of the designed surface area.

Prepare a Certification of Quantities, using the Department’s current approved form, for the certified Superpave Asphalt Base pay item. Submit this certification to the Engineer no later than Twelve O’clock noon Monday after the estimate cut-off or as directed by the Engineer, based on the quantity of asphalt produced and accepted on the Contract. The certification must include the Contract Number, FPID Number, Certification Number, Certification Date, period represented by Certification, and the tons produced for each asphalt pay item.

234-10 Basis of Payment.

Prices and payments will be full compensation for all work specified in this Section, including the applicable requirements of Sections 320, 330 and 334. The bid price for the asphalt mix will include the cost of the liquid asphalt binder or the asphalt recycling agent and the tack coat application as directed in 300-8. For the calculation of unit price adjustments of bituminous material specified in 9-2.1.1, the average asphalt binder content of the base mixes to be used in these calculations is set at 6.25%.

Payment will be made under:

Item No. 285- 7- Optional Base - per square yard.
SECTION 300
PRIME AND TACK COATS

300-1 Description.
Apply bituminous prime coats on previously prepared bases, and apply bituminous tack coats on previously prepared bases and on existing pavement surfaces.

300-2 Materials.

300-2.1 Prime Coat: For prime coat, use Cut-back Asphalt Grade RC-70 or RC-250 meeting the requirements of 916-2, Emulsified Asphalt Grades SS-1 or CSS-1, SS-1H, or CSS-1H diluted in equal proportion with water; Emulsified Asphalt Grade AE-60, AE-90, AE-150, or AE-200 diluted at the ratio of six parts emulsified asphalt to four parts water; Special MS-Emulsion diluted at the ratio of six parts emulsified asphalt to four parts water; Asphalt Emulsion Primer (AEP), Emulsion Primer (RS Type), LPR-1 Prime, or NTSS-1hm meeting the requirements of 916-3, or other types and grades of bituminous material which may be specified in the Contract Documents.

Where the above materials for use as a prime coat are to be diluted, certify that the dilution was done in accordance with this Section for each load of material used.

The Contractor may select any of the specified bituminous materials unless the Contract Documents indicate the use of a specific material. The Engineer may allow types and grades of bituminous material other than those specified above if the Contractor can show that the alternate material will properly perform the function of prime coat material.

300-2.2 Cover Material for Prime Coat: Uniformly cover the primed base by a light application of cover material. However, if using LPR-1 prime material, the Engineer may waive the cover material requirement if the primed base is not exposed to general traffic and construction traffic does not mar the prime coat so as to expose the base. The Contractor may use either sand or screenings for the cover material. For the sand, meet the requirements as specified in 902-2 or 902-6, and for the screenings, meet the requirements as specified in 902-5. If exposing the primed base course to general traffic, apply a cover material that has been coated with 2 to 4% asphalt cement. Apply the asphalt coated material at approximately 10 lb/yd². Roll the entire surface of asphalt coated prime material with a traffic roller as required to produce a reasonably dense mat.

300-2.3 Tack Coat: Unless the Contract Documents call for a specific type or grade of tack coat, use PG 52-28 meeting the requirements of 916-1, heated to a temperature of 250 to 300°F or undiluted Emulsified Asphalt Grades RS-1h, RS-2, CRS-1h, or NTSS-1hm meeting the requirements of 916-3. Heat RS-1h, RS-2, CRS-1h, and NTSS-1hm to a temperature of 150 to 180°F. The Contractor may use RS-1h modified to include up to 3% naphtha to improve handling of the material during the winter months of December, January and February or at any other time, as approved by the Engineer.

For night paving, use PG 52-28 tack coat. The Engineer may approve RS-1h, RS-2, CRS-1h, or NTSS-1hm for night paving if the Contractor demonstrates, at the time of use, that the emulsion will break and not affect the progress of the paving operation.
300-3 Equipment.

300-3.1 Pressure Distributor: Provide a pressure distributor that is equipped with pneumatic tires having a sufficient width of rubber in contact with the road surface to avoid breaking the bond or forming a rut in the surface. Ensure that the distance between the centers of openings of the outside nozzles of the spray bar is equal to the width of the application required, within an allowable variation of 2 inches. Ensure that the outside nozzle at each end of the spray bar has an area of opening not less than 25% or more than 75% in excess of the other nozzles. Ensure that all other nozzles have uniform openings. When the application covers less than the full width, the Contractor may allow the normal opening of the end nozzle at the junction line to remain the same as those of the interior nozzles.

300-3.2 Sampling Device: Equip all pressure distributors and transport tanks with an approved spigot-type sampling device.

300-3.3 Temperature Sensing Device: Equip all pressure distributors and transport tanks with an approved dial type thermometer.

Use a thermometer with a temperature range from 50 to 500°F with maximum 25°F increments with a minimum dial diameter of 2 inches.

Locate the thermometer near the midpoint in length and within the middle third of the height of the tank, or as specified by the manufacturer (if in a safe and easily accessible location). Enclose the thermometer in a well with a protective window or by other means as necessary to keep the instrument clean and in the proper working condition.

300-4 Contractor’s Quality Control.

Provide the necessary quality control of the prime and tack coats and application in accordance with the Contract requirements. Provide in the Quality Control Plan, procedures for monitoring and controlling of rate of application. If the rate of application varies by more than 5% from the rate set by the Engineer or varies beyond the range established in 300-7 or 300-8, immediately make all corrections necessary to bring the spread rate into the acceptable range. The Engineer may take additional measurements at any time. The Engineer will randomly check the Contractor’s measurement to verify the spread rate.

300-5 Cleaning Base and Protection of Adjacent Work.

Before applying any bituminous material, remove all loose material, dust, dirt, caked clay and other foreign material which might prevent proper bond with the existing surface for the full width of the application. Take particular care in cleaning the outer edges of the strip to be treated, to ensure that the prime or tack coat will adhere.

When applying the prime or tack coat adjacent to curb and gutter, valley gutter, or any other concrete surfaces, cover such concrete surfaces, except where they are to be covered with a bituminous wearing course, with heavy paper or otherwise protect them as approved by the Engineer, while applying the prime or tack coat. Remove any bituminous material deposited on such concrete surfaces.

300-6 Weather Limitations.

Do not apply prime and tack coats when the air temperature in the shade and away from artificial heat is less than 40°F at the location where the application is to be made or when weather conditions or the surface conditions are otherwise unfavorable.
300-7 Application of Prime Coat.

300-7.1 General: Clean the surface to be primed and ensure that the moisture content of the base does not exceed the optimum moisture. Ensure that the temperature of the prime material is between 100 and 150°F. The Engineer will designate the actual temperature to ensure uniform distribution. Apply the material with a pressure distributor. Determine the application amount based on the character of the surface. Use an amount sufficient to coat the surface thoroughly and uniformly with no excess.

300-7.2 Rate of Application:

300-7.2.1 Limerock, Limerock Stabilized, and Local Rock Bases: For these bases, use a rate of application that is not less than 0.10 gal/yd², unless a lower rate is directed by the Engineer. Determine the application rate at the beginning of each day’s production, and as needed to control the operation, a minimum of twice per day.

300-7.2.2 Sand-Clay, Shell and Shell Stabilized Bases: For these bases, use a rate of application that is not less than 0.15 gal/yd², unless a lower rate is directed by the Engineer. Determine the application rate at the beginning of each day’s production, and as needed to control the operation, a minimum of twice per day.

300-7.3 Sprinkling: If so required by the Engineer, lightly sprinkle the base with water and roll it with a traffic roller in advance of the application of the prime coat.

300-7.4 Partial Width of Application: If traffic conditions warrant, the Engineer may require that the application be made on only 1/2 the width of the base at one time, in which case use positive means to secure the correct amount of bituminous material at the joint.

300-8 Application of Tack Coat.

300-8.1 General: Where the Engineer requires a tack coat prior to laying a bituminous surface, apply the tack coat as specified herein below.

300-8.2 Where Required: Place a tack coat on all asphalt layers prior to constructing the next course. In general, the Engineer will not require a tack coat on primed bases except in areas that have become excessively dirty and cannot be cleaned, or in areas where the prime has cured to the extent that it has lost all bonding effect.

300-8.3 Method of Application: Apply the tack coat with a pressure distributor except that on small jobs, if approved by the Engineer, apply it by other mechanical devices or by hand methods. Heat the bituminous material to a suitable temperature as designated by the Engineer, and apply it in a thin, uniform layer.

300-8.4 Rate of Application: Use a rate of application as defined in Table 300-1. Control the rate of application to be within plus or minus 0.01 gallon per square yard of the target application rate. The target application rate may be adjusted by the Engineer to meet specific field conditions. Determine and record the rate of application a minimum of twice per day, once at the beginning of each day’s production and again as needed to control the operation. When using RA-550, multiply the target rate of application by 0.6.
300-8.5 Curing and Time of Application: The Engineer will designate the curing period for the tack coat. Apply the tack coat sufficiently in advance of the laying of the bituminous mix to permit drying, but do not apply the tack coat so far in advance that it might lose its adhesiveness as a result of being covered with dust or other foreign material.

300-8.6 Protection: Keep the tack coat surface free from traffic until the subsequent layer of bituminous hot mix has been laid.

300-9 Method of Measurement.

300-9.1 General: The quantity specified will be the volume, in gallons of bituminous material actually applied and accepted. This spread rate will be determined from measurements made by the Contractor and verified by the Engineer based on tank calibrations, as specified in 300-9.2. Where it is specified that prime coat or tack coat material is to be diluted with water, the amount specified for the spread rate will be the volume after dilution.

300-9.2 Calibration of Tanks: Ensure that all distributors used for applying tack or prime coats are calibrated prior to use by a reliable and recognized firm engaged in calibrating tanks. Provide a certification of calibration and the calibration chart to the Engineer prior to use. In lieu of a volumetrically calibrated distributor, use a distributor that is equipped with a calibrated meter and is approved by the Engineer.

300-9.3 Temperature Correction: Measure the volume and increase or decrease the volume actually measured to a corrected volume at a temperature of 60°F.

Make the correction for temperature by applying the applicable conversion factor (K), as shown below:

For petroleum oils having a specific gravity (60°F/60°F) above 0.966,
\[K = 0.00035 \text{ per degree} \]

For petroleum oils having a specific gravity (60°F/60°F) of between 0.850 and 0.966,
\[K = 0.00040 \text{ per degree} \]

For emulsified asphalt,
\[K = 0.00025 \text{ per degree} \]

When volume-correction tables based on the above conversion factors are not available, use the following formula in computing the corrections for volumetric change:

\[V = \frac{V'}{K(T - 60) + 1} \]
Where:
- \(V \) = Volume of the bituminous material at 60°F (pay volume).
- \(V_1 \) = Volume of bituminous material as measured.
- \(K \) = Correction factor (Coefficient of Expansion).
- \(T \) = Temperature (in °F), of the bituminous material when measured.

300-10 Basis of Payment.

There is no direct payment for the work specified in this Section, it is incidental to, and is to be included in the other items of related work.
320-1 General.

This Section specifies the basic equipment and operational requirements for hot mix asphalt (including warm mix asphalt) production facilities used in the construction of asphalt pavements and bases. Establish and maintain a quality control system that provides assurance that all materials and products submitted for acceptance meet Contract requirements.

320-2 Quality Control (QC) Requirements.

320-2.1 Minimum Producer QC Requirements: Perform as a minimum the following activities:

1. Stockpiles:
 a. Assure materials are placed in the correct stockpile;
 b. Assure good stockpiling techniques;
 c. Inspect stockpiles for separation, contamination, segregation, and other similar items;
 d. Properly identify and label each stockpile.

2. Incoming Aggregate:
 a. Obtain gradations and bulk specific gravity (G_{sb}) values from aggregate supplier for reference;
 b. Determine the gradation of all component materials and routinely compare gradations and G_{sb} values to mix design.

3. Cold Bins:
 a. Calibrate the cold gate/feeder belt for each material;
 b. Determine cold gate/feeder belt settings;
 c. Observe operation of cold feeder for uniformity;
 d. Verify accuracy of all settings;
 e. Verify that the correct components are being used, and that all modifiers or additives or both are being incorporated into the mix.

4. Batch Plants:
 a. Determine percent used and weight to be pulled from each bin to assure compliance with the mix design;
 b. Check mixing time;
 c. Check operations of weigh bucket and scales.

5. Drum Mixer Plants:
 a. Determine aggregate moisture content;
 b. Calibrate the weigh bridge on the charging conveyor.

6. Control Charts: Maintain QC data and charts (updated daily) for all QC Sampling and Testing and make available upon demand. Provide the following charts:
 a. All components used to determine the composite pay factor (No. 8 sieve, No. 200 sieve, asphalt binder content, air voids, and density);
 b. Gradation of incoming aggregate;
 c. Gradation, asphalt binder content and maximum specific gravity (G_{mm}) of RAP;
d. Any other test result or material characteristic (as determined by the Contractor) necessary for process control.

The above listed minimum activities are to be considered normal activities necessary to control the production of hot mix asphalt at an acceptable quality level. Depending on the type of process or materials, some of the activities listed may not be necessary and in other cases, additional activities may be required. The frequency of these activities will also vary with the process and the materials. When the process varies from the defined process average and variability targets, the frequency of these activities will be increased until the proper conditions have been restored.

320-2.2 Minimum Process Control Testing Requirements: Perform, as a minimum, the following activities at the testing frequencies provided in Table 320-1. QC tests used in the acceptance decision may be used to fulfill these requirements.

| Table 320-1 |
Asphal	Plant - Materials Testing Frequencies	
Material	Property	Minimum Testing Frequency
Aggregate	Gradation	Once per 1,000 tons of incoming aggregate
Asphalt Mix	Asphalt Binder Content	If daily production > 100 tons, once per day; If daily production > 1,000 tons, twice per day. *
Asphalt Mix	Bulk Specific Gravity (G_{mb})	If daily production > 100 tons, once per day; If daily production > 1,000 tons, twice per day. *
Asphalt Mix	Gradation	If daily production > 100 tons, once per day; If daily production > 1,000 tons, twice per day. *
Asphalt Mix	Maximum Specific Gravity (G_{mm})	If daily production > 100 tons, once per day; If daily production > 1,000 tons, twice per day. *
Asphalt Mix	Temperature	Each of first 5 loads, then once every 5 loads thereafter, per day per mix design.
RAP	Asphalt Binder Content	Once per 1,000 tons RAP
RAP	Gradation	Once per 1,000 tons RAP
RAP	Maximum Specific Gravity (G_{mm})	Once per 5,000 tons RAP

*If less than 100 tons of mix is produced on each of successive days of production, resulting in a cumulative quantity of greater than 100 tons, then perform the indicated test.

320-2.3 Personnel Qualifications: Provide QC Technicians in accordance with Section 105.

320-2.4 Hot Mix Asphalt Testing Laboratory Requirements: Furnish a fully equipped asphalt laboratory at the production site. The laboratory must be qualified under the Department's Laboratory Qualification Program, as described in Section 105. In addition, the laboratory shall meet the following requirements:
1. Area - The effective working area of the laboratory shall be a minimum of 180 square feet, with a layout of which will facilitate multiple tests being run simultaneously by two technicians. This area does not include the space for desks, chairs and file cabinets. Any variations shall be approved by the Engineer.

2. Lighting - The lighting in the lab must be adequate to illuminate all areas of the work.

3. Temperature Control - Equip the lab with heating and air conditioning units that provide a satisfactory working environment.

4. Ventilation - Equip the lab with exhaust fans that will remove all hazardous fumes from within the laboratory in accordance with OSHA requirements.

5. Equipment and Supplies - Furnish the lab with the necessary sampling and testing equipment and supplies for performing contractor QC and Department Verification Sampling and Testing. A detailed list of equipment and supplies required for each test is included in the appropriate FDOT, AASHTO, or ASTM Test Method. In the event testing equipment goes out of service during production, the Contractor may elect to use replacement equipment at another laboratory qualified, as described in Section 105, for up to 72 hours upon notification of the Engineer.

6. Personal Computer - Provide a personal computer capable of running a Microsoft Excel™ spreadsheet program, along with a printer.

7. Communication - Provide a telephone and fax machine (with a private line) for the use of the testing facility’s QC personnel. In addition, provide an internet connection capable of uploading data to the Department’s database and for e-mail communications.

320-3 Requirements for All Plants.

320-3.1 General: Design, manufacture, coordinate, and operate the asphalt plant in a manner that will consistently produce a mixture within the required tolerances and temperatures specified.

320-3.2 Electronic Weigh Systems: Equip the asphalt plant with an electronic weigh system that: 1) has an automatic printout, 2) is certified every six months by an approved certified scale technician, and 3) meets monthly comparison checks with certified truck scales as specified in 320-3.2.4. Weigh all plant produced hot mix asphalt on the electronic weigh system, regardless of the method of measurement for payment.

Include, as a minimum, the following information on the printed delivery ticket:

(a) Sequential load number
(b) Project number
(c) Date
(d) Name and location of plant
(e) Mix design number
(f) Place for hand-recording mix temperature
(g) Truck number
(h) Gross, tare, and net tonnage per truck (as applicable)
(i) Daily total tonnage of mix for the mix design

Print the delivery ticket with an original and at least one copy. Furnish the original to the Engineer at the plant and one copy to the Engineer at the paving site.

Utilize any one of the following three electronic weigh systems.

320-3.2.1 Electronic Weigh System on the Truck Scales: Provide an electronic weigh system on all truck scales, which is equipped with an automatic recordation system that is
approved by the Engineer. Use scales of the type that directly indicate the total weight of the
loaded truck. Use scales meeting the requirements for accuracy, condition, etc., of the Bureau of
Weights and Measures of the Florida Department of Agriculture, and re-certify such fact every
six months, either by the Bureau of Weights and Measures or by a registered scale technician.

320-3.2.2 Electronic Weigh System on Hoppers Beneath a Surge or Storage
Bin: Provide an electronic weigh system on the hopper (hopper scales or load cells) beneath the
surge or storage bin, which is equipped with an automatic recordation system approved by the
Engineer.

320-3.2.3 Automatic Batch Plants with Printout: For batch plants, provide an
approved automatic printer system which will print the individual or cumulative weights of
aggregate and liquid asphalt delivered to the pugmill and the total net weight of the asphalt mix
measured by hopper scales or load cell type scales. Use the automatic printer system only in
conjunction with automatic batching and mixing control systems that have been approved by the
Engineer.

320-3.2.4 Monthly Electronic Weigh System Comparison Checks: Check the
accuracy of the electronic weighing system at the commencement of production and thereafter at
least every 30 days during production by one of the following two methods and maintain a
record of the weights in the Scale Check Worksheet.

320-3.2.4.1. Electronic Weigh System on Truck Scales:
(a) The Engineer will randomly select a loaded truck of asphalt
mix, a loaded aggregate haul truck, or another vehicle type approved by the Engineer and record
the truck number and gross weight from the Contractor’s delivery ticket.
(b) Weigh the selected truck on a certified truck scale, which is not
owned by the Contractor and record the gross weight for the comparison check. If another
certified truck scale is not available, the Engineer may permit another set of certified truck scales
owned by the Contractor to be used. The Engineer may elect to witness the scale check.
(c) The gross weight of the loaded truck as shown on the
Contractor’s delivery ticket will be compared to the gross weight of the loaded truck from the
other certified truck scale. The maximum permissible deviation is 8 pounds per ton of load,
based on the certified truck scale weight.
(d) If the distance from the asphalt plant to the nearest certified
truck scale is enough for fuel consumption to affect the accuracy of the comparison checks, a
fuel adjustment may be calculated by using the truck odometer readings for the distance
measurement, and 6.1 miles per gallon for the fuel consumption rate, and 115 ounces per gallon
for fuel weight.
(e) During production, when an additional certified truck scale is
not available for comparison checks, the Engineer may permit the Contractor to weigh the truck
on his certified scales used during production and then weigh it on another certified truck scale,
as soon as the other scale is available for the comparison checks.

In addition to the periodic checks as specified above, check the
scales at any time the accuracy of the scales becomes questionable. When such inaccuracy does
not appear to be sufficient to seriously affect the weighing operations, the Engineer will allow a
period of two calendar days for the Contractor to conduct the required scale check. However, in
the event the indicated inaccuracy is sufficient to seriously affect the mixture, the Engineer may
require immediate shut-down until the accuracy of the scales has been checked and necessary
corrections have been made. Include the cost of all scale checks in the bid price for asphalt concrete, at no additional cost to the Department.

320-3.2.4.2. Electronic Weigh System on Hoppers Beneath a Surge or Storage Bin and Automatic Batch Plants with Printout:

(a) The Engineer will randomly select a loaded truck of asphalt mix and record the truck number, and the net weight of the asphalt mix from the Contractor’s delivery ticket.

(b) Weigh the selected truck on a certified truck scale, which is not owned by the Contractor and record the gross weight for the comparison check. If another certified truck scale is not available, the Engineer may permit another set of certified truck scales owned by the Contractor to be used. The Engineer may elect to witness the scale check.

(c) Deliver the asphalt mix to the project, then weigh the selected empty truck on the same certified truck scales. Record the tare weight of the truck.

(d) Compare the net weight of the asphalt mix from the delivery ticket to the calculated net weight of the asphalt mix as determined by the certified truck scale weights. The maximum permissible deviation is 8 pounds per ton of load, based on the certified truck scale weight.

(e) Use the fuel adjustment as specified in 320-3.2.4.1(d), when the distance from the asphalt plant to the nearest certified truck scale is enough for fuel consumption to affect the accuracy of the comparison checks.

(f) During production, when an additional certified truck scale is not available for comparison checks, the Engineer may permit the Contractor to load a truck with aggregate from the pugmill, surge or storage bin, and follow the above procedures to conduct the comparison checks as soon as certified truck scale is available.

If the check shows a greater difference than the tolerance specified above, then recheck on a second set of certified scales. If the check and recheck indicate that the printed weight is out of tolerance, have a certified scale technician check the electronic weigh system and certify the accuracy of the printer. While the system is out of tolerance and before its adjustment, the Engineer may allow the Contractor to continue production only if provisions are made to use a set of certified truck scales to determine the truck weights.

320-3.3 Asphalt Binder: Meet the following requirements:

320-3.3.1 Transportation: Deliver the asphalt binder to the asphalt plant at a temperature not to exceed 370°F, and equip the transport tanks with sampling and temperature sensing devices meeting the requirements of 300-3.2.

320-3.3.2 Storage: Equip asphalt binder storage tanks to heat the liquid asphalt binder to the temperatures required for the various mixtures. Heat the material in such a manner that no flame comes in contact with the binder. Heat or insulate all pipe lines and fittings. Use a circulating system of adequate size to ensure proper and continuous circulation during the entire operating period. Locate a thermometer, reading from 200 to 400°F, either in the storage tank or in the asphalt binder feed line. Maintain the asphalt binder in storage within a range of 230 to 370°F in advance of mixing operations. Locate a sampling device on the discharge piping exiting the storage tank or at a location as approved by the Engineer.

320-3.4 Aggregate: Meet the following requirements:

320-3.4.1 Stockpiles: Place each aggregate component in an individual stockpile, and separate each from the adjacent stockpiles, either by space or by a system of bulkheads.
Prevent the intermingling of different materials in stockpiles at all times. Identify each stockpile, including RAP, as shown on the mix design.

Form and maintain stockpiles in a manner that will prevent segregation. If a stockpile is determined to be segregated, discontinue the use of the material on the project until the appropriate actions have been taken to correct the problem.

320-3.4.2 Blending of Aggregates: Stockpile all aggregates prior to blending or placing in the cold feed bins. If mineral filler or hydrated lime is required in the mix, feed or weight it in separately from the other aggregates.

320-3.4.2.1 Cold Feed Bin: Provide a separate cold feed bin for each component of the fine and coarse aggregate required by the mix design. Equip the cold feed bins with accurate mechanical means for feeding the aggregate uniformly into the dryer in the proportions required for the finished mix to maintain uniform production and temperature. When using RAP as a component material, prevent any oversized RAP from being incorporated into the completed mixture by the use of: a grizzly or grid over the RAP bin; in-line roller or impact crusher; screen; or other suitable means. If oversized RAP material appears in the completed recycled mix, take the appropriate corrective action immediately. If the appropriate corrective actions are not immediately taken, stop plant operations.

Use separate bin compartments in the cold aggregate feeder that are constructed to prevent any spilling or leakage of aggregate from one cold feed bin to another. Ensure that each cold feed bin compartment has the capacity and design to permit a uniform flow of aggregates. Mount all cold feed bin compartments over a feeder of uniform speed, which will deliver the specified proportions of the separate aggregates to the drier at all times. If necessary, equip the cold feed bins with vibrators to ensure a uniform flow of the aggregates at all times.

320-3.4.2.2 Gates and Feeder Belts: Provide each cold feed bin compartment with a gate and feeder belt, both of which are adjustable to assure the aggregate is proportioned to meet the requirements of the mix design.

320-3.4.3 Screening Unit: Remove any oversized pieces of aggregate by the use of a scalping screen. Do not return this oversized material to the stockpile for reuse unless it has been crushed and reprocessed into sizes that will pass the scalping screen. Ensure that the quantity of aggregates being discharged onto the screens does not exceed the capacity of the screens to actually separate the aggregates into the required sizes.

320-3.5 Dryer: Provide a dryer of satisfactory design for heating and drying the aggregate. Use a dryer capable of heating the aggregate to within the specified temperature range for any mix, and equip the dryer with an electric pyrometer placed at the discharge chute to automatically register the temperature of the heated aggregates.

320-3.6 Asphalt Binder Control Unit: Provide a satisfactory means, either by weighing, metering, or volumetric measuring, to obtain the proper amount of asphalt binder material in the mix, within the tolerance specified for the mix design.

320-3.7 Contractor’s Responsibilities: Acceptance of any automatic delivery ticket printout, electronic weight delivery ticket, other evidence of weight of the materials or approval of any particular type of material or production method will not constitute agreement by the Department that such matters are in accordance with the Contract Documents and it shall be the Contractor’s responsibility to ensure that the materials delivered to the project are in accordance with the Contract Documents.
320-4 Additional Requirements for Batch Plants.

320-4.1 Heating and Drying: Heat and dry the aggregate before screening. Control the temperature of the aggregate so the temperature of the completed mixture at the plant falls within the permissible range allowed by this Section.

320-4.2 Gradation Unit: Provide plant screens capable of separating the fine and coarse aggregates and of further separating the coarse aggregate into specific sizes. In addition, equip the gradation unit with a scalping screen to restrict the maximum size of the aggregates. In the event that the plant is equipped with cold feed bins that are capable of adequately controlling the gradation of the mixture, the use of plant screens is optional.

320-4.3 Hot Bins: Provide storage bins of sufficient capacity to supply the mixer when it is operating at full capacity. Provide hot bins with divided compartments to ensure separate and adequate storage of the appropriate fractions of the aggregate. Equip each compartment with an overflow chute of suitable size and location to prevent any backing up of material into other bins.

320-4.4 Weigh Box or Hopper: Equip the batch plant with a means for accurately weighing each bin size of aggregate and the mineral filler into the weigh box or hopper.

320-4.5 Pugmills: Utilize a pugmill capable of mixing the aggregate and the asphalt binder.

320-5 Additional Requirements for Drum Mixer Plants.

320-5.1 Weight Measurements of Aggregate: Equip the plant with a weigh-in-motion scale capable of measuring the quantity of aggregate (and RAP) entering the dryer.

320-5.2 Synchronization of Aggregate Feed and Asphalt Binder Feed: Couple the asphalt binder feed control with the total aggregate weight device, including the RAP feed, in such a manner as to automatically vary the asphalt binder feed rate as necessary to maintain the required proportions.

320-5.3 Hot Storage or Surge Bins: Equip the plant with either a surge bin or storage silo that is capable of storing an adequate amount of material to assure a uniform and consistent product.

320-6 Preparation of the Mixture.

320-6.1 Mixing: After the aggregate is dried and properly proportioned, mix the aggregate, along with any other components, with the asphalt binder to produce a thoroughly and uniformly coated mixture.

320-6.2 Storage: If necessary, store the asphalt mixture in a surge bin or hot storage silo for a maximum of 72 hours. For FC-5 mixtures, store the asphalt mixture in a surge bin or hot storage silo for a maximum of one hour.

320-6.3 Mix Temperature: Produce the mixture with a temperature within the master range as defined in Table 320-2.

320-6.3.1 Test Requirements: Determine the temperature of the completed mixture using a quick-reading thermometer through a hole in the side of the loaded truck immediately after loading. Locate a 1/4 inch hole on both sides of the truck body within the middle third of the length of the body, and at a distance from 6 to 10 inches above the surface supporting the mixture. If a truck body already has a hole located in the general vicinity of the specified location, use this hole. At the Engineer's discretion, the Contractor may take the temperature of the load over the top of the truck in lieu of using the hole in the side of the truck.

320-6.3.2 Test Frequency: The normal frequency for taking asphalt mix temperatures will be for each day, for each design mix on the first five loads and one out of every
five loads thereafter. Take the temperature of the asphalt mix at the plant and at the roadway before the mix is placed at the normal frequency. Record the temperature on the front of the respective delivery ticket. The Engineer shall review the plant and roadway temperature readings and may take additional temperature measurements at any time.

If any single load at the plant or at the roadway is within the master range shown in Table 320-2 but does not meet the criteria shown in Table 320-3 (for single measurements or the average of five consecutive measurements), the temperature of every load will be monitored until the temperature falls within the specified tolerance range in Table 320-3; at this time the normal frequency may be resumed. For warm mix asphalt, the Contractor may produce the first five loads of the production day at a hot mix asphalt temperature not to exceed 330°F for purposes of heating the asphalt paver. For this situation, the upper tolerances of Tables 320-2 and 320-3 as applied to the warm mix asphalt mix design do not apply.

320-6.3.3 Rejection Criteria: Reject any load or portion of a load of asphalt mix at the plant or at the roadway with a temperature outside of its respective master range shown in Table 320-2. Notify the Engineer of the rejection immediately.

<table>
<thead>
<tr>
<th>Table 320-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Temperature Master Range Tolerance</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Plant</td>
</tr>
<tr>
<td>Roadway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 320-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix Temperature Tolerance From Verified Mix Design</td>
</tr>
<tr>
<td>Any Single Measurement</td>
</tr>
<tr>
<td>Average of Any Five Consecutive Measurements</td>
</tr>
</tbody>
</table>

320-7 Transportation of the Mixture.

Transport the mix in trucks of tight construction, which prevents the loss of material and the excessive loss of heat and previously cleaned of all foreign material. After cleaning, thinly coat the inside surface of the truck bodies with soapy water or an asphalt release agent as needed to prevent the mixture from adhering to the beds. Do not allow excess liquid to pond in the truck body. Do not use a release agent that will contaminate, degrade, or alter the characteristics of the asphalt mix or is hazardous or detrimental to the environment. Petroleum derivatives (such as diesel fuel), solvents, and any product that dissolves asphalt are prohibited. Provide each truck with a tarpaulin or other waterproof cover mounted in such a manner that it can cover the entire load when required. When in place, overlap the waterproof cover on all sides so that it can be tied down. Cover each load during cool and cloudy weather and at any time it appears rain is likely during transit with a tarpaulin or waterproof cover. Cover and tie down all loads of friction course mixtures.
SECTION 327
MILLING OF EXISTING ASPHALT PAVEMENT

327-1 Description.
Remove existing asphalt concrete pavement by milling to improve the rideability and cross slope of the finished pavement, to lower the finished grade adjacent to existing curb prior to resurfacing, or to completely remove existing pavement.
When milling to improve rideability, the Plans will specify an average depth of cut.
Take ownership of milled material.

327-2 Equipment.
Provide a milling machine capable of maintaining a depth of cut and cross slope that will achieve the results specified in the Contract Documents. Use a machine with a minimum overall length (out to out measurement excluding the conveyor) of 18 feet and a minimum cutting width of 6 feet.
Equip the milling machine with a built-in automatic grade control system that can control the transverse slope and the longitudinal profile to produce the specified results.
To start the project, the Engineer will approve any commercially manufactured milling machine that meets the above requirements. If it becomes evident after starting milling that the milling machine cannot consistently produce the specified results, the Engineer will reject the milling machine for further use.
The Contractor may use a smaller milling machine when milling to lower the grade adjacent to existing curb or other areas where it is impractical to use the above described equipment.
Equip the milling machine with means to effectively limit the amount of dust escaping during the removal operation.
For complete pavement removal, the Engineer may approve the use of alternate removal and crushing equipment in lieu of the equipment specified above.

327-3 Construction.
327-3.1 General: Remove the existing raised reflective pavement markers prior to milling. Include the cost of removing existing pavement markers in the price for milling.
When milling to improve rideability or cross slope, remove the existing pavement to the average depth specified in the Plans, in a manner that will restore the pavement surface to a uniform cross-section and longitudinal profile. The Engineer may require the use of a stringline to ensure maintaining the proper alignment.
Establish the longitudinal profile of the milled surface in accordance with the milling plans. Ensure that the final cross slope of the milled surface parallels the surface cross slope shown in the Plans or as directed by the Engineer. Establish the cross slope of the milled surface by a second sensing device near the outside edge of the cut or by an automatic cross slope control mechanism. The Plans may waive the requirement of automatic grade or cross slope controls where the situation warrants such action.
Operate the milling machine to minimize the amount of dust being emitted. The Engineer may require prewetting of the pavement.
Provide positive drainage of the milled surface and the adjacent pavement. Perform this operation on the same day as milling. Repave all milled surfaces no later than the day after the surface was milled unless otherwise stated in the Plans.

If traffic is to be maintained on the milled surface prior to the placement of the new asphalt concrete, provide suitable transitions between areas of varying thickness to create a smooth longitudinal riding surface. Produce a pattern of striations that will provide an acceptable riding surface. The Engineer will control the traveling speed of the milling machine to produce a texture that will provide an acceptable riding surface.

Prior to opening an area which has been milled to traffic, sweep the pavement with a power broom or other approved equipment to remove, to the greatest extent practicable, fine material which will create dust under traffic. Sweep in a manner that will minimize the potential for creation of a traffic hazard and to minimize air pollution.

Sweep the milled surface with a power broom prior to placing asphalt concrete. In urban and other sensitive areas, use a street sweeper or other equipment capable of removing excess milled materials and controlling dust. Obtain the Engineer's approval of such equipment, contingent upon its demonstrated ability to do the work.

Perform the sweeping operation immediately after the milling operations or as directed by the Engineer.

327-3.2 Quality Control Requirements: Furnish an electronic level with a length of 4 feet and an accuracy of plus or minus 0.1 degree approved by the Engineer for the control of cross slope. Make this electronic level available at the jobsite at all times during milling operations. Calibrate and compare electronic levels in accordance with 330-9.3.1 at a minimum frequency of once per day before any milling operation.

Multiple cuts may be made to achieve the required pavement configuration or depth of cut. Measure the cross slope of the milled surface by placing the level at the center location of a lane and perpendicular to the roadway centerline. Record all the measurements to the nearest 0.1% on an approved form and submit to the Engineer for documentation.

1. Tangent Sections: Measure the cross slope per lane at a minimum frequency of one measurement every 100 feet. Calculate the absolute deviation of cross slope at each measurement and then average the absolute deviation of ten consecutive cross slope measurements. The absolute deviation is the positive value of a deviation. When the average absolute deviation cross slope is consistently within the acceptance tolerance as shown in Table 327-1 and upon approval by the Engineer, the frequency of the cross slope measurements can be reduced to one measurement every 200 feet during milling operations.

2. Superelevated Sections: Measure the cross slope every 100 feet per lane within the length of full superelevation. Calculate the absolute deviation of each measurement and then average the absolute deviation of ten consecutive cross slope measurements. For every transition section, measure the cross slope at control points identified in the Plans or, if not shown in the Plans, at a control point at a location of 0.0% cross slope. For curves where the length of the fully superelevated section is less than 250 feet, measure the cross slope at the beginning point, midpoint and ending point of the fully superelevated section, calculate the absolute deviation and average. When the number of measurements is less than ten and the length of full superelevation is greater than 250 feet, average the absolute deviation of all measurements.

If the average absolute deviation of the cross slope measurements falls outside the acceptance tolerance shown in Table 327-1, stop the milling operations and make adjustments.
until the problem is resolved to the satisfaction of the Engineer. If an individual cross slope deviation falls outside the acceptance tolerance as shown in Table 327-1, make corrections only in the deficient area to the satisfaction of the Engineer at no cost to the Department. For pavement with multiple cuts, the deficient areas not caused by the final cut may be left in place upon approval of the Engineer. All milling corrections shall be completed before placement of the asphalt course unless stated otherwise in the Plans or as determined by the Engineer.

The limits of deficient areas requiring correction may be verified and adjusted with more accurate measurement methods, including survey instruments, upon approval by the Engineer at no cost to the Department. Should the Contractor wish to have any corrections waived, submit a request to the Engineer for approval. The Engineer may waive the corrections at no reduction in payment if an engineering determination indicates that the deficiencies are sufficiently separated so as not to significantly affect the final cross slope or project grade.

For intersections, tapers, crossovers, transitions at the beginning and end of the project, bridge approaches and similar areas, adjust the cross slope to match the actual site conditions, or as directed by the Engineer.

<table>
<thead>
<tr>
<th>TABLE 327-1</th>
<th>Cross Slope Milling Acceptance Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Feature</td>
<td>Individual Absolute Deviation</td>
</tr>
<tr>
<td>Tangent section (including turn lanes)</td>
<td>0.4%</td>
</tr>
<tr>
<td>Superelevated curve</td>
<td>0.4%</td>
</tr>
<tr>
<td>Shoulder</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

In the event that the distance between tow edges of deficient areas is less than 100 feet, the correction work shall include the area between the deficient sections.

327-3.3 Verification: The Engineer will verify the Contractor’s cross slope measurements by randomly taking a minimum of ten cross slope measurements per lane per mile in tangent sections, control points in transition sections, and a minimum of three cross slope measurements on fully superelevated sections. The Engineer will measure the cross slope of the milled surface by placing the level at the center location of a lane and perpendicular to the roadway centerline. If the average absolute deviation or an individual cross slope deviation falls outside the acceptance tolerance as shown in Table 327-1, immediately make a comparison check at the QC test locations to verify the QC measurements in the questionable section. If the comparisons are beyond the acceptable comparison tolerance in accordance with 327-3.2, stop the milling operation until the problem is resolved to the satisfaction of the Engineer. Correct any cross slope not meeting the individual deviation acceptance tolerance at no cost to the Department. The Engineer reserves the right to check the cross slope of the milled surface at any time by taking cross slope measurements at any location.

327-4 Milled Surface.

Provide a milled surface with a reasonably uniform texture, within 1/4 inch of a true profile grade, and with no deviation in excess of 1/4 inch from a straightedge applied to the pavement perpendicular to the centerline. Ensure that the variation of the longitudinal joint between multiple cut areas does not exceed 1/4 inch. The Engineer may accept areas varying
from a true surface in excess of the above stated tolerance without correction if the Engineer
determines that they were caused by a pre-existing condition which could not have reasonably
been corrected by the milling operations. Correct any unsuitable texture or profile, as determined
by the Engineer, at no additional expense to the Department.

The Engineer may require remilling of any area where a surface lamination causes a non-
uniform texture to occur.

327-5 Method of Measurement.
The quantity to be paid for will be the plan quantity area, in square yards, over which
milling is completed and accepted.

327-6 Basis of Payment.
Price and payment will be full compensation for all work specified in this Section,
including hauling off and stockpiling or otherwise disposing of the milled material.
Payment will be made under:

Item No. 327- 70- Milling Existing Asphalt Pavement - per square yard.
HOT MIX ASPHALT FOR LAP (OFF-SYSTEM).
(REV 11-17-11) (FA 2-27-12)

SECTION 334
HOT MIX ASPHALT FOR LAP (OFF-SYSTEM)

334-1 Description.

334-1.1 General: Construct a Hot Mix Asphalt (HMA) pavement based on the type of work specified in the Contract and the Asphalt Work Categories as defined below. Meet the applicable requirements for plants, equipment, and construction requirements as defined below. Use a HMA mix that meets the requirements of this specification.

334-1.2 Asphalt Work Mix Categories: Construction of Hot Mix Asphalt Pavement will fall into one of the following work categories:

- **334-1.2.1 Asphalt Work Category 1:** Includes the construction of bike paths and miscellaneous asphalt.
- **334-1.2.2 Asphalt Work Category 2:** Includes the construction of new HMA turn lanes, paved shoulders and other non-mainline pavement locations.
- **334-1.2.3 Asphalt Work Category 3:** Includes the construction of new mainline HMA pavement lanes, milling and resurfacing.

334-1.3 Mix Types: Use the appropriate HMA mix as shown in Table 334-1.

<table>
<thead>
<tr>
<th>Asphalt Work Category</th>
<th>Mix Types</th>
<th>Traffic Level</th>
<th>ESALs (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type SP-9.5(1)</td>
<td>A</td>
<td><0.3</td>
</tr>
<tr>
<td>2</td>
<td>Structural Mixes: Types SP-9.5 or SP-12.5(1) Friction Mixes: Types FC-9.5 or FC-12.5(1)</td>
<td>B</td>
<td>0.3 to <3</td>
</tr>
<tr>
<td>3</td>
<td>Structural Mixes: Types SP-9.5 or SP-12.5 Friction Mixes: Types FC-9.5 or FC-12.5</td>
<td>C</td>
<td>≥3</td>
</tr>
</tbody>
</table>

(1) Equivalent mixes may be approved as determined by the Engineer. For example, Marshall S-III mixture type is equivalent to Superpave SP-9.5, Marshall S-I is equivalent to Superpave SP-12.5, and Marshall FC-3 is equivalent to Superpave FC-9.5.

A Type SP or FC mix one traffic level higher than the traffic level specified in the Contract may be substituted, at no additional cost (i.e. Traffic Level B may be substituted for Traffic Level A, etc.). Traffic levels are as defined in Section 334 of the Department’s Standard Specifications for Road and Bridge Construction.

334-1.4 Gradation Classification: HMA mixes are classified as either coarse or fine, depending on the overall gradation of the mixture. Coarse and fine mixes are defined in 334-3.2.2. Use only fine mixes.

The equivalent AASHTO nominal maximum aggregate size Superpave mixes are as follows:
334-1.5 Thickness: The total pavement thickness of the HMA pavement will be based on a specified spread rate or plan thickness as shown in the Contract Documents. Before paving, propose a spread rate or thickness for each individual layer meeting the requirements of this specification, which when combined with other layers (as applicable) will equal the plan spread rate or thickness. When the total pavement thickness is specified as plan thickness, the plan thickness and individual layer thickness will be converted to spread rate using the following equation:

\[
\text{Spread rate (lbs/\text{yd}^2)} = t \times G_{\text{mm}} \times 43.3
\]

where:
- \(t \) = Thickness (in.) (Plan thickness or individual layer thickness)
- \(G_{\text{mm}} \) = Maximum specific gravity from the mix design

For target purposes only, spread rate calculations shall be rounded to the nearest whole number.

334-1.5.1 Layer Thicknesses: Unless otherwise called for in the Contract Documents, the allowable layer thicknesses for HMA mixtures are as follows:
- Type SP-9.5, FC-9.5 ... 3/4 – 1-1/2 inches
- Type SP-12.5, FC-12.5....................................... 1 1/2 – 2-1/2 inches

334-1.5.2 Additional Requirements: The following requirements also apply to HMA mixtures:
1. When construction includes the paving of adjacent shoulders (less than or equal to 5 feet wide), the layer thickness for the upper pavement layer and shoulder shall be the same and paved in a single pass, unless otherwise called for in the Contract Documents.
2. For overbuild layers, use the minimum and maximum layer thicknesses as specified above unless called for differently in the Contract Documents. On variable thickness overbuild layers, the minimum allowable thickness may be reduced by 1/2 inch, and the maximum allowable thickness may be increased by 1/2 inch, unless called for differently in the Contract Documents.

334-1.6 Weight of Mixture: The weight of the mixture shall be determined as provided in 320-3.2 of the Florida Department of Transportation (FDOT) specifications.

334-2 Materials.

334-2.1 Superpave Asphalt Binder: Unless specified elsewhere in the Contract or in 334-2.3.3, use a PG 67-22 asphalt binder from the FDOT’s Qualified Products List (QPL). If the Contract calls for an alternative binder, meet the requirements of FDOT Specifications Section 336 or 916, as appropriate.

334-2.2 Aggregate: Use aggregate capable of producing a quality pavement.

For Type FC mixes, use an aggregate blend that consists of crushed granite, crushed Oolitic limestone, other crushed materials (as approved by FDOT for friction courses per Rule 14-103.005, Florida Administrative Code), or a combination of the above. Crushed limestone from the Oolitic formation may be used if it contains a minimum of 12% silica material as determined by FDOT Test Method FM 5-510 and FDOT grants approval of the source prior to its use. As an exception, mixes that contain a minimum of 60% crushed granite may either contain:
1. Up to 40% fine aggregate from other sources; or,
2. A combination of up to 20% RAP and the remaining fine aggregate from other sources.

A list of aggregates approved for use in friction courses may be available on the FDOT’s State Materials Office website. The URL for obtaining this information, if available, is: ftp://ftp.dot.state.fl.us/fdot/smo/website/sources/frictioncourse.pdf.

334-2.3 Reclaimed Asphalt Pavement (RAP) Material:

334-2.3.1 General requirements: RAP may be used as a component of the asphalt mixture, if approved by the Engineer. Usage of RAP is subject to the following requirements:

1. Limit the amount of RAP material used in the mix to a maximum of 50% by weight of total aggregate.
2. Provide stockpiled RAP material that is reasonably consistent in characteristics and contains no aggregate particles which are soft or conglomerates of fines.
3. Provide RAP material having a minimum average asphalt content of 4.0% by weight of total mix. The Engineer may sample the stockpile to verify that this requirement is met.
4. Use a grizzly or grid over the RAP cold bin, in-line roller crusher, screen, or other suitable means to prevent oversized RAP material from showing up in the completed recycle mixture. If oversized RAP material appears in the completed recycle mix, take the appropriate corrective action immediately. If the appropriate corrective actions are not immediately taken, stop plant operations.

334-2.3.2 Material Characterization: Assume responsibility for establishing the asphalt binder content, gradation, viscosity and bulk specific gravity (G_{sb}) of the RAP material based on a representative sampling of the material.

334-2.3.3 Asphalt Binder for Mixes with RAP: Select the appropriate asphalt binder grade based on Table 334-2. Maintain the viscosity of the recycled mixture within the range of 5,000 to 15,000 poises.

<table>
<thead>
<tr>
<th>Percent RAP</th>
<th>Asphalt Binder Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>PG 67-22</td>
</tr>
<tr>
<td>20 – 29</td>
<td>PG 64-22</td>
</tr>
<tr>
<td>≥ 30</td>
<td>Recycling Agent</td>
</tr>
</tbody>
</table>

334-3 Composition of Mixture.

334-3.1 General: Compose the asphalt mixture using a combination of aggregates, mineral filler, if required, and asphalt binder material. Size, grade and combine the aggregate fractions to meet the grading and physical properties of the mix design. Aggregates from various sources may be combined.

334-3.2 Mix Design:

334-3.2.1 General: Design the asphalt mixture in accordance with AASHTO R 35-09, except as noted herein. Submit the proposed mix design with supporting test data indicating compliance with all mix design criteria to the Engineer. Prior to the production of
any asphalt mixture, obtain the Engineer’s conditional approval of the mix design. If required by the Engineer, send representative samples of all component materials, including asphalt binder to a laboratory designated by the Engineer for verification. As an exception to these requirements, use a currently approved FDOT Mix Design.

The Engineer will consider any marked variations from original test data for a mix design or any evidence of inadequate field performance of a mix design as sufficient evidence that the properties of the mix design have changed, and at his discretion, the Engineer may no longer allow the use of the mix design.

334-3.2.2 Mixture Gradation Requirements: Combine the aggregates in proportions that will produce an asphalt mixture meeting all of the requirements defined in this specification and conform to the gradation requirements at design as defined in AASHTO M 323-07, Table 3. Aggregates from various sources may be combined.

334-3.2.2.1 Mixture Gradation Classification: Plot the combined mixture gradation on an FHWA 0.45 Power Gradation Chart. Include the Control Points from AASHTO M323-07, Table-3, as well as the Primary Control Sieve (PCS) Control Point from AASHTO M323-07, Table 4. Fine mixes are defined as having a gradation that passes above or through the primary control sieve control point. Use only fine mixes.

334-3.2.3 Gyratory Compaction: Compact the design mixture in accordance with AASHTO T312-09. Use the number of gyrations as defined in AASHTO R35-09, Table 1.

334-3.2.4 Design Criteria: Meet the requirements for nominal maximum aggregate size as defined in AASHTO M323-07, as well as for relative density, VMA, VFA, and dust-to-binder ratio as specified in AASHTO M323-07, Table 6.

334-3.2.5 Moisture Susceptibility: Test 4 inch specimens in accordance with FM 1-T 283. Provide a mixture having a retained tensile strength ratio of at least 0.80 and a minimum tensile strength (unconditioned) of 100 psi. If necessary, add a liquid anti-stripping agent from the FDOT’s Qualified Products List or hydrated lime in order to meet these criteria.

In lieu of moisture susceptibility testing, add a liquid anti-stripping agent from the FDOT’s Qualified Products List. Add 0.5% liquid anti-stripping agent by weight of binder.

334-3.2.6 Additional Information: In addition to the requirements listed above, provide the following information on each mix design:

1. The design traffic level and the design number of gyrations (N_{design}).
2. The source and description of the materials to be used.
3. The FDOT source number and the FDOT product code of the aggregate components furnished from an FDOT approved source (if required).
4. The gradation and proportions of the raw materials as intended to be combined in the paving mixture. The gradation of the component materials shall be representative of the material at the time of use. Compensate for any change in aggregate gradation caused by handling and processing as necessary.
5. A single percentage of the combined mineral aggregate passing each specified sieve. Degradation of the aggregate due to processing (particularly material passing the No. 200 sieve) should be accounted for and identified.
6. The bulk specific gravity (G_{sb}) value for each individual aggregate and RAP component.
7. A single percentage of asphalt binder by weight of total mix intended to be incorporated in the completed mixture, shown to the nearest 0.1%.
8. A target temperature at which the mixture is to be discharged from the plant and a target roadway temperature. Do not exceed a target temperature of 330°F for modified asphalts and 315°F for unmodified asphalts.

9. Provide the physical properties achieved at four different asphalt binder contents. One shall be at the optimum asphalt content, and must conform to all specified physical requirements.

10. The name of the mix designer.

11. The ignition oven calibration factor.

334-4 Process Control.
Assume full responsibility for controlling all operations and processes such that the requirements of these Specifications are met at all times. Perform any tests necessary at the plant and roadway to control the process.

334-5 General Construction Requirements.
334-5.1 Weather Limitations: Do not transport asphalt mix from the plant to the roadway unless all weather conditions are suitable for the laying operations.

334-5.2 Limitations of Laying Operations:
334-5.2.1 General: Spread the mixture only when the surface upon which it is to be placed has been previously prepared, is intact, firm, and properly cured, and is dry.

334-5.2.2 Air Temperature: Spread the mixture only when the air temperature in the shade and away from artificial heat is at least 40°F for layers greater than 1 inch (100 lb per square yard) in thickness and at least 45°F for layers 1 inch (100 lb per square yard) or less in thickness (this includes leveling courses). The minimum temperature requirement for leveling courses with a spread rate of 50 lb per square yard or less is 50°F.

334-5.3 Mix Temperature: Heat and combine the ingredients of the mix in such a manner as to produce a mixture with a temperature at the plant and at the roadway, within a range of plus or minus 30°F from the target temperature as shown on the mix design. Reject all loads outside of this range.

334-5.4 Transportation of the Mixture: Transport the mixture in vehicles previously cleaned of all foreign material. After cleaning, thinly coat the inside surface of the truck bodies with soapy water or an asphalt release agent as needed to prevent the mixture from adhering to the beds. Do not allow excess liquid to pond in the truck body. Do not use diesel fuel or any other hazardous or environmentally detrimental material as a coating for the inside surface of the truck body. Cover each load at all times.

334-5.5 Preparation of Surfaces Prior to Paving:
334-5.5.1 Cleaning: Clean the surface of all loose and deleterious material by the use of power brooms or blowers, supplemented by hand brooming where necessary.

334-5.5.2 Patching and Leveling Courses: As shown in the plans, bring the existing surface to proper grade and cross-section by the application of patching or leveling courses.

334-5.5.3 Application over Surface Treatment: Where an asphalt mix is to be placed over a surface treatment, sweep and dispose of all loose material from the paving area.

334-5.5.4 Tack Coat: Use a rate of application as defined in Table 334-3. Control the rate of application to be within plus or minus 0.01 gal. per square yard of the target application rate. The target application rate may be adjusted by the Engineer to meet specific
field conditions. Determine the rate of application as needed to control the operation. When using RA-550, multiply the target rate of application by 0.6.

<table>
<thead>
<tr>
<th>Asphalt Mixture Type</th>
<th>Underlying Pavement Surface</th>
<th>Target Tack Rate (gal/yd²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Course, Structural Course,</td>
<td>Newly Constructed Asphalt Layers</td>
<td>0.02 minimum</td>
</tr>
<tr>
<td>Dense Graded Friction Course</td>
<td>Milled Surface or Oxidized and Cracked Pavement</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Concrete Pavement</td>
<td>0.08</td>
</tr>
<tr>
<td>Open Graded Friction Course</td>
<td>Newly Constructed Asphalt Layers</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Milled Surface</td>
<td>0.07</td>
</tr>
</tbody>
</table>

334-5.6 Paving:

334-5.6.1 Alignment of Edges: With the exception of pavements placed adjacent to curb and gutter or other true edges, place all pavements by the stringline method to obtain an accurate, uniform alignment of the pavement edge. Control the unsupported pavement edge to ensure that it will not deviate more than plus or minus 1.5 inches from the stringline.

334-5.6.2 Rain and Surface Conditions: Immediately cease transportation of asphalt mixtures from the plant when rain begins at the roadway. Do not place asphalt mixtures while rain is falling, or when there is water on the surface to be covered. Once the rain has stopped and water has been removed from the tacked surface to the satisfaction of the Engineer and the temperature of the mixture caught in transit still meets the requirements as specified in 334-5.3, the Contractor may then place the mixture caught in transit.

334-5.6.3 Checking Depth of Layer: Check the depth of each layer at frequent intervals to ensure a uniform spread rate that will meet the requirements of the Contract.

334-5.6.4 Hand Spreading: In limited areas where the use of the spreader is impossible or impracticable, spread and finish the mixture by hand.

334-5.6.5 Spreading and Finishing: Upon arrival, dump the mixture in the approved paver, and immediately spread and strike-off the mixture to the full width required, and to such loose depth for each course that, when the work is completed, the required weight of mixture per square yard, or the specified thickness, is secured. Carry a uniform amount of mixture ahead of the screed at all times.

334-5.6.6 Thickness Control: Ensure the spread rate is within 10% of the target spread rate, as indicated in the Contract. When calculating the spread rate, use, at a minimum, an average of five truckloads of mix. When the average spread rate is beyond plus or minus 10% of the target spread rate, monitor the thickness of the pavement layer closely and adjust the construction operations.

If the Contractor fails to maintain an average spread rate within plus or minus 10% of the target spread rate for two consecutive days, the Engineer may elect to stop the construction operation at any time until the issue is resolved.

When the average spread rate for the total structural or friction course pavement thickness exceeds the target spread rate by ±50 lbs per sy for layers ≥ 2.5 inches or exceeds the target spread rate by ±25 lbs per sy for layers < 2.5 inches, address the
unacceptable pavement in accordance with 334-5.10.4, unless an alternative approach is agreed upon by the Engineer.

334-5.7 Leveling Courses:

334-5.7.1 Patching Depressions: Before spreading any leveling course, fill all depressions in the existing surface as shown in the plans.

334-5.7.2 Spreading Leveling Courses: Place all courses of leveling with an asphalt paver or by the use of two motor graders, one being equipped with a spreader box. Other types of leveling devices may be used upon approval by the Engineer.

334-5.7.3 Rate of Application: When using Type SP-9.5 (fine graded) for leveling, do not allow the average spread of a layer to be less than 50 pounds per square yard or more than 75 pounds per square yard. The quantity of mix for leveling shown in the plans represents the average for the entire project; however, the Contractor may vary the rate of application throughout the project as directed by the Engineer. When leveling in connection with base widening, the Engineer may require placing all the leveling mix prior to the widening operation.

334-5.8 Compaction: For each paving or leveling train in operation, furnish a separate set of rollers, with their operators.

When density testing for acceptance is required, select equipment, sequence, and coverage of rolling to meet the specified density requirement. Regardless of the rolling procedure used, complete the final rolling before the surface temperature of the pavement drops to the extent that effective compaction may not be achieved or the rollers begin to damage the pavement.

When density testing for acceptance is not required, use a rolling pattern approved by the Engineer.

Use hand tamps or other satisfactory means to compact areas which are inaccessible to a roller, such as areas adjacent to curbs, headers, gutters, bridges, manholes, etc.

334-5.9 Joints.

334-5.9.1 Transverse Joints: Construct smooth transverse joints, which are within 3/16 inch of a true longitudinal profile when measured with a 15 foot manual straightedge. These requirements are waived for transverse joints at the beginning and end of the project and at the beginning and end of bridge structures, if the deficiencies are caused by factors beyond the control of the Contractor such as no milling requirement, as determined by the Engineer. When smoothness requirements are waived, construct a reasonably smooth transitional joint.

334-5.9.2 Longitudinal Joints: For all layers of pavement except the leveling course, place each layer so that longitudinal construction joints are offset 6 to 12 inches laterally between successive layers. Do not construct longitudinal joints in the wheel paths. The Engineer may waive these requirements where offsetting is not feasible due to the sequence of construction.

334-5.10 Surface Requirements: Construct a smooth pavement with good surface texture and the proper cross slope.

334-5.10.1 Texture of the Finished Surface of Paving Layers: Produce a finished surface of uniform texture and compaction with no pulled, torn, raveled, crushed or loosened portions and free of segregation, bleeding, flushing, sand streaks, sand spots, or ripples. Correct any area of the surface that does not meet the foregoing requirements in accordance with 334-5.10.4.
334-5.10.2 Cross Slope: Construct a pavement surface with cross slopes in compliance with the requirements of the Contract Documents.

334-5.10.3 Pavement Smoothness: Construct a smooth pavement meeting the requirements of this Specification. Furnish a 15 foot manual and a 15 foot rolling straightedge meeting the requirements of FM 5-509.

334-5.10.3.1 Straightedge Testing:

334-5.10.3.1.1 Acceptance Testing: Using a rolling straightedge, test the final (top) layer of the pavement. Test all pavement lanes where the width is constant using a rolling straightedge and document all deficiencies on a form approved by the Engineer. Notify the Engineer of the location and time of all straightedge testing a minimum of 48 hours before beginning testing.

334-5.10.3.1.2 Final (Top) Pavement Layer: At the completion of all paving operations, straightedge the final (top) layer either behind the final roller of the paving train or as a separate operation. Address all deficiencies in excess of 3/16 inch in accordance with 334-5.10.4, unless waived by the Engineer. Retest all corrected areas.

334-5.10.3.1.3 Straightedge Exceptions: Straightedge testing will not be required in the following areas: shoulders, intersections, tapers, crossovers, sidewalks, bicycle/shared use paths, parking lots and similar areas, or in the following areas when they are less than 250 feet in length: turn lanes, acceleration/deceleration lanes and side streets. In the event the Engineer identifies a surface irregularity in the above areas that is determined to be objectionable, straightedge and address all deficiencies in excess of 3/8 inch in accordance with 334-5.10.4.

334-5.10.4 Correcting Unacceptable Pavement: Correct deficiencies in the pavement layer by removing and replacing the full depth of the layer, extending a minimum of 50 feet on both sides of the defective area for the full width of the paving lane, at no additional cost.

334-6 Acceptance of the Mixture.

334-6.1 General: The asphalt mixture will be accepted based on the Asphalt Work Category as defined below:

1. Asphalt Work Category 1 – Certification by the Contractor as defined in 334-6.2.
2. Asphalt Work Category 2 – Certification and process control testing by the Contractor as defined in 334-6.3
3. Asphalt Work Category 3 – Process control testing by the Contractor and acceptance testing by the Engineer as defined in 334-6.4.

334-6.2 Certification by the Contractor: On Asphalt Work Category 1 construction, the Engineer will accept the mix on the basis of visual inspection. Submit a Notarized Certification of Specification Compliance letter on company letterhead to the Engineer stating that all material produced and placed on the project meets the requirements of the Specifications. The Engineer may run independent tests to determine the acceptability of the material.

334-6.3 Certification and Process Control Testing by the Contractor: On Asphalt Work Category 2 construction, submit a Notarized Certification of Specification Compliance letter on company letterhead to the Engineer stating that all material produced and placed on the project meets the requirements of the Specifications, along with supporting test data documenting all process control testing as described in 334-6.3.1. If required by the Contract, utilize an Independent Laboratory as approved by the Engineer for the process control testing.
The mix will also require visual acceptance by the Engineer. In addition, the Engineer may run independent tests to determine the acceptability of the material. Material failing to meet these acceptance criteria will be addressed as directed by the Engineer such as but not limited to acceptance at reduced pay, delineation testing to determine the limits of the questionable material, removal and replacement at no cost to the agency, or performing an Engineering analysis to determine the final disposition of the material.

334-6.3.1 Process Control Sampling and Testing Requirements: Perform process control testing at a frequency of once per day. Obtain the samples in accordance with FDOT Method FM 1-T 168. Test the mixture at the plant for gradation (P_{8} and P_{200}) and asphalt binder content (P_b). Measure the roadway density with 6 inch diameter roadway cores at a minimum frequency of once per 1,500 feet of pavement with a minimum of three cores per day.

Determine the asphalt binder content of the mixture in accordance with FM 5-563. Determine the gradation of the recovered aggregate in accordance with FM 1-T 030. Determine the roadway density in accordance with FM 1-T 166. The minimum roadway density will be based on the percent of the maximum specific gravity (Gmm) from the approved mix design. If the Contractor or Engineer suspects that the mix design Gmm is no longer representative of the asphalt mixture being produced, then a new Gmm value will be determined from plant-produced mix with the approval of the Engineer. Roadway density testing will not be required in certain situations as described in 334-6.4.1. Assure that the asphalt binder content, gradation and density test results meet the criteria in Table 334-4.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder Content (percent)</td>
<td>Target ± 0.55</td>
</tr>
<tr>
<td>Passing No. 8 Sieve (percent)</td>
<td>Target ± 6.00</td>
</tr>
<tr>
<td>Passing No. 200 Sieve (percent)</td>
<td>Target ± 2.00</td>
</tr>
<tr>
<td>Roadway Density (daily average)</td>
<td>Minimum 91.5% of Gmm</td>
</tr>
<tr>
<td>Roadway Density (any single core)</td>
<td>Minimum 88.0 % of Gmm</td>
</tr>
</tbody>
</table>

334-6.4 Process Control Testing by the Contractor and Acceptance Testing by the Engineer: On Asphalt Work Category 3, perform process control testing as described in 334-6.3.1. In addition, the Engineer will accept the mixture at the plant with respect to gradation (P_{8} and P_{200}) and asphalt binder content (P_b). The mixture will be accepted on the roadway with respect to density. The Engineer will sample and test the material as described in 334-6.3.1. The Engineer will randomly obtain at least one set of samples per day. Assure that the asphalt content, gradation and density test results meet the criteria in Table 334-4. Material failing to meet these acceptance criteria will be addressed as directed by the Engineer such as but not limited to acceptance at reduced pay, delineation testing to determine the limits of the questionable material, removal and replacement at no cost to the agency, or performing an Engineering analysis to determine the final disposition of the material.

334-6.4.1 Acceptance Testing Exceptions: When the total quantity of any mix type in the project is less than 500 tons, the Engineer will accept the mix on the basis of visual inspection. The Engineer may run independent tests to determine the acceptability of the material.

Density testing for acceptance will not be performed on widening strips or
shoulders with a width of 5 feet or less, variable thickness overbuild courses, leveling courses, any asphalt layer placed on subgrade (regardless of type), miscellaneous asphalt pavement, bike/shared use paths, crossovers, or any course with a specified thickness less than 1 inch or a specified spread rate less than 100 lb per square yard. Density testing for acceptance will not be performed on asphalt courses placed on bridge decks or approach slabs. In addition, density testing for acceptance will not be performed on the following areas when they are less than 1,000 feet continuous in length: turning lanes, acceleration lanes, deceleration lanes, shoulders, parallel parking lanes, or ramps. Density testing for acceptance will not be performed in intersections. The limits of the intersection will be from stop bar to stop bar for both the mainline and side streets. Compact these courses in accordance with a standard rolling procedure approved by the Engineer. In the event that the rolling procedure deviates from the approved procedure, placement of the mix will be stopped.

334-7 Method of Measurement.

For the work specified under this Section, the quantity to be paid for will be the weight of the mixture, in tons.

The bid price for the asphalt mix will include the cost of the liquid asphalt or the asphalt recycling agent and the tack coat application as specified in 334-5.5.4. There will be no separate payment or unit price adjustment for the asphalt binder material in the asphalt mix.

334-8 Basis of Payment.

334-8.1 General: Price and payment will be full compensation for all the work specified under this Section.
SECTION 710
PAINTED PAVEMENT MARKINGS

710-1 Description.
Apply Painted Traffic Stripes and Markings, in accordance with the Contract Documents.

710-2 Materials.
Use only materials listed on the Department’s Qualified Products List (QPL) meeting the following requirements:
 - Raised Retroreflective Pavement Markers and Bituminous Adhesive ... Section 970
 - Standard Waterborne Fast Dry Traffic Paint .. 971-1 and 971-3
 - Fast Dry Solvent Paint .. 971-1 and 971-4
 - Glass Spheres .. 971-1 and 971-2
The Engineer will take random samples of all material in accordance with the Department’s Sampling, Testing and Reporting Guide schedule.

710-3 Equipment.
Use equipment that will produce continuous uniform dimensions of pavement markings of varying widths and meet the following requirements:
 (a) Capable of traveling at a uniform, predetermined rate of speed, both uphill and downhill, in order to produce a uniform application of paint and capable of following straight lines and making normal curves in a true arc.
 (b) Capable of applying glass spheres to the surface of the completed stripe by an automatic sphere dispenser attached to the striping machine such that the glass spheres are dispensed closely behind the installed line. Use a glass spheres dispenser equipped with an automatic cut-off control that is synchronized with the cut-off of the traffic paint and applies the glass spheres in a manner such that the spheres appear uniform on the entire pavement markings surface with, 50 to 60% embedment.
 (c) Capable of spraying the paint to the required thickness and width without thinning of the paint. Equip the paint tank with nozzles equipped with cut-off valves, which will apply broken or skip lines automatically.

710-4 Application:
 710-4.1 General: Remove existing pavement markings, such that scars or traces of removed markings will not conflict with new pavement markings, by a method approved by the Engineer. Payment for marking removal will be in accordance with 102-5.8.
Before applying traffic stripes and markings, remove any material by a method approved by the Engineer that would adversely affect the bond of the traffic stripes.
Apply traffic stripes and markings only to dry surfaces, and when the ambient air and surface temperature is at least 40ºF and rising. Do not apply traffic stripes and markings when winds are sufficient to cause spray dust.
Apply traffic stripes and markings, having well defined edges, over existing pavement markings such that not more than 2 inches on either end and not more than 1 inch on either side is visible.
Mix the paint thoroughly prior to pouring into the painting machine. Apply paint to the pavement by spray or other means approved by the Engineer.

Conduct field testing in accordance with FM 5-541. Remove and replace traffic stripes and markings not meeting the requirements of this Section at no additional cost to the Department.

Apply all pavement markings prior to opening the road to traffic.

710-4.1.1 Final Surface: Painted pavement markings (final surface) will include two applications of standard painted pavement markings and one application of retroreflective pavement markers applied to the final surface. Wait at least 14 days after the first application to apply the second application of painted pavement markings (final surface). Second application must be applied prior to final acceptance of the project.

Apply all retroreflective pavement markers per the requirements of Section 706.

710-4.2 Thickness: Apply paint to attain a minimum wet film thickness in accordance with the manufacturer’s recommendations.

710-4.3 Retroreflectivity: Apply white and yellow standard pavement markings that will attain an initial retroreflectance of not less than 300 mcd/lx·m² and not less than 250 mcd/lx·m², respectively. Measure, record, and certify on a Department approved form and submit to the Engineer, the retroreflectivity of white and yellow pavement markings in accordance with FM 5-541.

The Department reserves the right to test the markings within 3 days of receipt of the Contractor’s certification. Failure to afford the Department opportunity to test the markings will result in non-payment. The test readings should be representative of the Contractor’s striping performance. If the retroreflectivity values measure below values shown above, reapply the striping at no additional cost to the Department.

For standard pavement markings, ensure that the minimum retroreflectance of white and yellow pavement markings are not less than 150 mcd/lx·m². If the retroreflectivity values fall below the 150 mcd/lx·m² value within six months of initial application, the striping will be reapplied at the Contractor’s expense.

710-4.4 Color: Use paint material that meets the requirements of 971-1.

710-4.5 Glass Spheres: Apply glass spheres on all pavement markings immediately and uniformly following the paint application. The rate of application shall be based on the manufacturer’s recommendation.

710-5 Tolerances in Dimensions and in Alignment.

Establish tack points at appropriate intervals for use in aligning stripes, and set a stringline from such points to achieve accuracy.

710-5.1 Dimensions:

710-5.1.1 Longitudinal Lines: Apply painted skip line segments with no more than plus or minus 12 inches variance, so that over-tolerance and under-tolerance lengths between skip line and the gap will approximately balance. Apply longitudinal lines at least 2 inches from construction joints of portland cement concrete pavement.

710-5.1.2 Transverse Markings, Gore Markings, Arrows, and Messages: Apply paint in multiple passes when the marking cannot be completed in one pass, with an overall line width allowable tolerance of plus or minus 1 inch.
710-5.1.3 Contrast Lines: Use black paint to provide contrast on concrete or light asphalt pavement, when specified by the Engineer. Apply black paint in 10 foot segments following each longitudinal skip line.

710-5.2 Alignment: Apply painted stripes that will not deviate more than 1 inch from the stringline on tangents and curves one degree or less. Apply painted stripes that will not deviate more than 2 inches from the stringline on curves greater than one degree. Apply painted edge stripes uniformly, not less than 2 inches or more than 4 inches from the edge of pavement, without noticeable breaks or deviations in alignment or width.

Remove and replace at no additional cost to the Department, traffic stripes that deviate more than the above stated requirements.

710-5.3 Correction Rates: Make corrections of variations in width at a maximum rate of 10 feet for each 0.5 inches of correction. Make corrections of variations in alignment at a maximum rate of 25 feet for each 1 inch of correction, to return to the stringline.

710-6 Contractor’s Responsibility for Notification.

Notify the Engineer prior to the placement of the materials. Furnish the Engineer with the manufacturer’s name and batch numbers of the materials and glass spheres to be used. Ensure that the approved batch numbers appear on the materials and glass spheres packages.

710-7 Protection of Newly Painted Pavement Markings.

Do not allow traffic onto or permit vehicles to cross newly applied pavement markings until they are sufficiently dry. Remove and replace any portion of the pavement markings damaged by passing traffic or from any other cause, at no additional cost to the Department.

710-8 Corrections for Deficiencies to Applied Painted Pavement Markings.

Reapply a 1.0 mile section centered around any deficiency, at no additional cost to the Department.

710-9 Submittals.

710-9.1 Submittal Instructions: Prepare a certification of quantities, using the Department’s current approved form, for each project in the Contract. Submit the certification of quantities and daily worksheets to the Engineer. The Department will not pay for any disputed items until the Engineer approves the certification of quantities.

710-9.2 Contractor’s Certification of Quantities: Request payment by submitting a certification of quantities no later than Twelve O’clock noon Monday after the estimate cut-off date or as directed by the Engineer, based on the amount of work done or completed. Ensure the certification of quantities consists of the following:

(a) Contract Number, FPID Number, Certification Number, Certification Date and the period that the certification represents.

(b) The basis for arriving at the amount of the progress certification, less payments previously made and less any amount previously retained or withheld. The basis will include a detailed breakdown provided on the certification of items of payment.

710-10 Method of Measurement.

The quantities to be paid for under this Section will be as follows:

(a) The length, in net miles, of 6 inch solid traffic stripe, authorized and acceptably applied.
(b) The total traversed distance in gross miles of 10-30 or 3-9 skip line. The actual applied line is 25% of the traverse distance for a 1:3 ratio. This equates to 1,320 feet of marking per mile of single line.

c) The net length, in feet, of each of all other types of lines and stripes, authorized and acceptably applied.

d) The number of pavement messages, symbols and directional arrows, authorized and acceptably applied.

e) Lump Sum, as specified in 710-4.1.1 when the item for painted pavement markings (final surface) is included in the proposal.

The net length, in feet of dotted and skip stripes other than 10-30 and 3-9 will be measured as the distance from the beginning of the first painted stripe to the end of the last painted stripe with proper deductions made for unpainted intervals as determined by plan dimensions or stations, subject to 9-1.3. Unpainted intervals will not be included in pay quantity.

The gross-mile measurement of 10-30 and 3-9 skip traffic stripes will be taken as the distance from the beginning of the first painted stripe to the end of the last painted stripe, and will include the unpainted intervals. It will not include any lengths of unpainted intervals which, by design or by other intent of the Department, are greater than 30 feet. Final measurement will be determined by plan dimensions or stations, subject to 9-1.3.1.

710-11 Basis of Payment.

710-11.1 General: Prices and payments will be full compensation for all work specified in this Section, including, all cleaning and preparing of surfaces, furnishing of all materials, application, curing and protection of all items, protection of traffic, furnishing of all tools, machines and equipment, and all incidentals necessary to complete the work. Final payment will be withheld until all deficiencies are corrected.

710-11.2 Lump Sum Payment: When the item for painted pavement markings (final surface) is included in the proposal, prices and payments will be full compensation for two applications of all painted pavement markings applied to the final surface, and one application of retroreflective pavement markers applied to the final surface in accordance with Section 706.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td>Painted Pavement Markings.</td>
</tr>
<tr>
<td></td>
<td>Traffic Stripes, Solid - per net mile.</td>
</tr>
<tr>
<td></td>
<td>Traffic Stripes, Solid - per foot.</td>
</tr>
<tr>
<td></td>
<td>Traffic Stripes, Skip - per gross mile.</td>
</tr>
<tr>
<td></td>
<td>Traffic Stripes, Skip - per foot.</td>
</tr>
<tr>
<td></td>
<td>Dotted/Guideline - per foot.</td>
</tr>
<tr>
<td></td>
<td>Messages - each.</td>
</tr>
<tr>
<td></td>
<td>Arrows - each.</td>
</tr>
<tr>
<td></td>
<td>Yield Markings - per foot.</td>
</tr>
</tbody>
</table>

| Item No. 710-90 | Painted Pavement Markings (Final Surface) - lump sum. |
SECTION 971
TRAFFIC MARKING MATERIALS

971-1 General Requirements.

971-1.1 Packaging and Labeling: All traffic marking materials shall be shipped in strong containers plainly marked with the weight in pounds per gallon, the volume of traffic marking materials content in gallons, the color, user information, date of manufacture, batch and DOT code number. Each batch manufactured shall have a unique number. A true statement of the percentage composition of the pigment, the proportion of pigment to vehicle, and the name and address of the manufacturer, also shall be shown. The label shall warn the user of any special handling or precautions of the material, as recommended by the manufacturer. Any package not so marked will not be accepted for use under these specifications.

Preformed thermoplastic materials and permanent tape products shall be marked with content, color, date of manufacture and batch number.

971-1.2 Storage: Any traffic marking materials which, although inspected and approved at the point of manufacture, hardens or cures in the containers so that it cannot be readily broken up with a paddle to a smooth, uniform painting consistency, will be rejected. All materials shall have a container storage life of one year from date of manufacture. Any traffic marking materials not acceptable for proper application will be rejected, even though it conforms to these Specifications in all other respects.

971-1.3 Mixing: All paints shall be delivered to the project completely mixed, and ready to be used without additional oil or thinner. Gasoline shall not be used for thinner under any circumstances.

971-1.4 Qualified Products List (QPL): All traffic marking materials shall be one of the products listed on the Department’s Qualified Products List (QPL). Manufacturers seeking evaluation of their product shall submit an application in accordance with Section 6 accompanied by a copy of the infrared identification curve (2.5 to 15 μm) for the vehicle component. Products may only be used for applications recommended by the manufacturer. A notation of the number of coats and the thickness of each coat at which the product passes testing may be placed on the QPL. When listed, this will be the minimum criteria for application of the traffic marking material.

971-1.5 Samples: Field samples will be obtained in accordance with the Department’s Sampling, Testing and Reporting Guide Schedule.

971-1.6 Color: Materials for pavement markings shall meet the following performance requirements.

The initial daytime chromaticity for yellow materials shall fall within the box created by the following coordinates:

<table>
<thead>
<tr>
<th>Initial Daytime Chromaticity Coordinates (Corner Points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

The in-service daytime chromaticity for yellow materials shall fall within the box created by the following coordinates:

<table>
<thead>
<tr>
<th>In-Service Daytime Chromaticity Coordinates (Corner Points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>
The nighttime chromaticity for yellow materials shall fall within the box created by the following coordinates:

Nighttime Chromaticity Coordinates (Corner Points)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.530</td>
<td>0.510</td>
<td>0.435</td>
<td>0.449</td>
</tr>
<tr>
<td>Y</td>
<td>0.456</td>
<td>0.485</td>
<td>0.429</td>
<td>0.377</td>
</tr>
</tbody>
</table>

971-1.7 Additional Requirements: Traffic marking materials shall be characterized as non-hazardous as defined by Resource Conservation and Recovery Act (RCRA) 40 CFR 261. Provide supporting independent analytical data or product material safety data sheets (MSDS) identifying any components listed in Table 1 of 40 CFR 261.24.

Additionally, retroreflective elements shall contain no more than 200 ppm by weight of lead or arsenic when tested in accordance with the Environmental Protection Agency (EPA) Testing Methods 3052, 6010B, and 6010C.

971-2 Glass Spheres.

971-2.1 General Requirements: Glass spheres shall be of a composition designed to be highly resistant to traffic wear and to the effects of weathering for the production of a reflective surface, creating night visibility of the pavement markings without altering day visibility of the marking. The general requirements of 971-1 apply to glass spheres.

971-2.2 Specific Properties: The large (Type 3 or larger) glass spheres used for drop on beads shall have an adhesion coating. Type 1 glass spheres used for drop on beads shall have a dual coating. Beads used in the intermix of materials are not required to be coated.

The following physical requirements apply:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundness*</td>
<td>ASTM D1155</td>
<td>Min. 70 % by weight</td>
</tr>
<tr>
<td>Roundness**</td>
<td>ASTM D1155</td>
<td>Min. 80 % by weight</td>
</tr>
<tr>
<td>Refractive Index*</td>
<td>Becke Line Method (25+/-5C)</td>
<td>1.5 minimum</td>
</tr>
<tr>
<td>Refractive Index**</td>
<td>Becke Line Method (25+/-5C)</td>
<td>1.9 minimum</td>
</tr>
</tbody>
</table>

*Type 1, 3, 4 and 5 beads
**High Index beads

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent by Mass Passing Designated Sieve (ASTM D1214)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grading Designation</td>
</tr>
<tr>
<td></td>
<td>Type 1 (AASHTO)</td>
</tr>
<tr>
<td>No. 8</td>
<td>100</td>
</tr>
<tr>
<td>No. 10</td>
<td>100</td>
</tr>
</tbody>
</table>
Table: Percent by Mass Passing Designated Sieve (ASTM D1214)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Type 1 (AASHTO)</th>
<th>Type 3 (FP 96)</th>
<th>Type 4 (FP 96)</th>
<th>Type 5 (FP 96)</th>
<th>High Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 12</td>
<td>100</td>
<td>95 - 100</td>
<td>80 - 95</td>
<td>80 - 95</td>
<td></td>
</tr>
<tr>
<td>No. 14</td>
<td>95 - 100</td>
<td>80 - 95</td>
<td>10 - 40</td>
<td>10 - 40</td>
<td></td>
</tr>
<tr>
<td>No. 16</td>
<td>100</td>
<td>80 - 95</td>
<td>10 - 40</td>
<td>0 - 5</td>
<td>100</td>
</tr>
<tr>
<td>No. 18</td>
<td>10 - 40</td>
<td>0 - 5</td>
<td>0 - 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 20</td>
<td>95 - 100</td>
<td>0 - 5</td>
<td>0 - 2</td>
<td></td>
<td>95 - 100</td>
</tr>
<tr>
<td>No. 25</td>
<td>0 - 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 30</td>
<td></td>
<td>75 - 95</td>
<td></td>
<td></td>
<td>55 - 85</td>
</tr>
<tr>
<td>No. 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 - 45</td>
</tr>
<tr>
<td>No. 50</td>
<td>15 - 35</td>
<td></td>
<td></td>
<td></td>
<td>0 - 5</td>
</tr>
<tr>
<td>No. 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 100</td>
<td>0 - 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide the Engineer Certified test reports from the manufacturer confirming that all glass spheres conform to the requirements of this Section.

971-2.3 Sampling:

971-2.3.1 Sampling: A random 50 lb sample of glass spheres shall be obtained for each 50,000 lb shipped. Upon arrival, the quantity of material will be reduced in a sample splitter to a size of approximately one quart by the Engineer, or one 50 lb unopened bag.

971-2.3.2 Containers: The spheres shall be furnished in new 50 lb moisture-proof bags. All containers shall meet ICC requirements for strength and type and be marked in accordance with AASHTO 247 Part 5.

971-3 Standard Waterborne Fast Dry Traffic Paint.

971-3.1 General: Standard waterborne fast dry traffic paints intended for use under this Specification shall include water reducible products that are single packaged and ready mixed. Upon curing, these materials shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The material shall have the capability of being cleaned and flushed from the striping machines using regular tap water and any required rust inhibitors. The manufacturer shall have the option of formulating the material according to his own specifications. However, the requirements delineated in this Specification and Section 710 shall apply regardless of the type of formulation used. The material shall be free from all skins, dirt and foreign objects.

971-3.2 Composition:
<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Solids, by weight</td>
<td>ASTM D2369</td>
<td>minimum 75%</td>
</tr>
<tr>
<td>Pigments, by weight</td>
<td>ASTM D3723</td>
<td>minimum 57%</td>
</tr>
<tr>
<td>Vehicle Solids % of Vehicle*</td>
<td></td>
<td>minimum 40%</td>
</tr>
<tr>
<td>TiO₂, Type II Rutile (white paint only)</td>
<td>ASTM D476</td>
<td>minimum 1.0 lb/gal</td>
</tr>
<tr>
<td>Volatile Organic Content, (VOC)</td>
<td>ASTM D3960</td>
<td>maximum 150 g/L</td>
</tr>
</tbody>
</table>

*Vehicle Solids % of Vehicle = \(\frac{\% \text{ total solids} - \% \text{ pigment}}{100 \cdot \% \text{ pigment}} \)

971-3.3 Physical Requirements: The material shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ASTM D1475</td>
<td>13.5 ± 1.4 lb/gal</td>
<td></td>
</tr>
<tr>
<td>Viscosity at 77°F</td>
<td>ASTM D562</td>
<td>80 KU</td>
<td>100 KU</td>
</tr>
<tr>
<td>Fineness of Grind</td>
<td>ASTM D1210</td>
<td>3(HS)</td>
<td></td>
</tr>
<tr>
<td>Dry Opacity at 5 mils WFT</td>
<td>ASTM D2805</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>Bleed Ratio</td>
<td>ASTM D969</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Method B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>971-3.3.2</td>
<td>Pass</td>
<td>-</td>
</tr>
</tbody>
</table>

971-3.3.1 Set To Bear Traffic Time: The material shall set to bear traffic in not more than two minutes.

971-3.3.2 Abrasion Resistance: Test four samples per LOT using a Taber Abrader. The paint shall be applied to specimen plates using a drawdown blade having a clearance of 26 mils. Air dry each sample for 30 minutes and bake at 220°F for 18 hours. Clean with a soft brush and weigh each sample. Abrade samples for 1,000 cycles with 500 g weights and CS-10 wheels. Clean the samples with a soft brush and weigh again. The average weight loss for the four plates shall not exceed 50 mg per plate.

971-3.3.3 Retroreflectivity: The white and yellow pavement markings shall attain an initial retroreflectance of not less than 300 mcd/lx m² and 250 mcd/lx m². The retroreflectance of the white and yellow pavement markings at the end of the six month service life shall not be less than 150 mcd/lx m².

971-3.4 Packaging and Labeling: The traffic paint shall be placed in 55 gallon open-end steel drums with a re-usable multi-seal sponge gasket. No more than 50 gallons of material shall be placed in any drum to allow for expansion during transport and storage.

971-4 Fast Dry Solvent Traffic Paint.

971-4.1 General: Fast dry traffic paints intended for use under this Specification shall include products that are single packaged and ready mixed. Upon curing, these materials shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall have the option of formulating the material according to his own specifications. However, the requirements delineated in this Specification and Section 710 shall apply regardless of the type of formulation used. The material shall be free from all skins, dirt and foreign objects.
971-4.2 Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Solids, by weight</td>
<td>ASTM D2369</td>
<td>75% minimum</td>
</tr>
<tr>
<td>Pigments, by weight</td>
<td>ASTM D3723</td>
<td>57% minimum</td>
</tr>
<tr>
<td>Vehicle Solids, % on Vehicle4</td>
<td></td>
<td>40% minimum</td>
</tr>
<tr>
<td>TiO₂, Type II Rutile (white paint only)</td>
<td>ASTM D476</td>
<td>1.5 lb/gal minimum</td>
</tr>
<tr>
<td>Volatile Organic Content, (VOC)</td>
<td>ASTM D3960</td>
<td>150 g/L maximum</td>
</tr>
</tbody>
</table>

971-4.3 Physical Requirements: The material shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ASTM D1475</td>
<td>13.5 ± 0.37 lb/gal</td>
<td>N/A</td>
</tr>
<tr>
<td>Viscosity at 77°F</td>
<td>ASTM D562</td>
<td>80 KU</td>
<td>100 KU</td>
</tr>
<tr>
<td>Fineness of Grind</td>
<td>ASTM D1210</td>
<td>3(18)</td>
<td></td>
</tr>
<tr>
<td>Dry Opacity at 5 mils WFT</td>
<td>ASTM D2805</td>
<td>0.92</td>
<td>-</td>
</tr>
<tr>
<td>Bleed Ratio</td>
<td>ASTM D969</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>971-4.3.2</td>
<td>Pass</td>
<td>-</td>
</tr>
</tbody>
</table>

971-4.3.1 Set To Bear Traffic Time: The material shall set to bear traffic in not more than two minutes.

971-4.3.2 Abrasion Resistance: Test four samples per LOT using a Taber Abrader. The paint shall be applied to specimen plates using a drawdown blade having a clearance of 26 mils. Air dry each sample for 30 minutes and bake at 220°F for 18 hours. Clean with a soft brush and weigh each sample. Abrade samples for 1,000 cycles with 500 g and CS-10 wheels. Clean the samples with a soft brush and weigh again. The average weight loss for the four plates shall not exceed 50 mg per plate.

971-4.3.3 Retroreflectivity: The white and yellow pavement markings shall attain an initial retroreflectance of not less than 300 mcd/lx·m² and 250 mcd/lx·m², respectively. The retroreflectance of the white and yellow pavement markings at the end of the six month service life shall not be less than 150 mcd/lx·m².

971-4.4 Application Properties: Application properties shall meet the requirements of Section 710.

971-4.5 Packaging and Labeling: The traffic paint shall be placed in 55 gallon open-end steel drums with a re-usable multi-seal sponge gasket. No more than 50 gallons of material shall be placed in any drum to allow for expansion during transport and storage.
971-5 Thermoplastic Materials for Traffic Stripes.

971-5.1 General: Upon cooling to normal pavement temperature, these materials shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall utilize alkyd based materials only and shall have the option of formulating the material according to his own specifications. However, the requirements delineated in this Specification and Section 711 shall apply regardless of the type of formulation used. The pigment, glass spheres, and filler shall be well dispersed in the resin. The material shall be free from all skins, dirt and foreign objects.

971-5.2 Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder</td>
<td></td>
<td>20.0% minimum</td>
<td>20.0% minimum</td>
</tr>
<tr>
<td>TiO₂, Type II Rutile</td>
<td>ASTM D476</td>
<td>10.0% minimum</td>
<td>-</td>
</tr>
<tr>
<td>Glass Spheres</td>
<td>AASHTO T250</td>
<td>40.0% minimum</td>
<td>40.0% minimum</td>
</tr>
<tr>
<td>Yellow Pigment</td>
<td></td>
<td>-</td>
<td>% minimum per manufacturer</td>
</tr>
<tr>
<td>Calcium Carbonate and Inert Filler (-200 mesh sieve)</td>
<td></td>
<td>30.0% maximum</td>
<td>37.5% maximum</td>
</tr>
</tbody>
</table>

Percentages are by weight.

The alkyd/maleic binder must consist of a mixture of synthetic resins (at least one synthetic resin must be solid at room temperature) and high boiling point plasticizers. At least one-half of the binder composition must be 100% maleic-modified glycerol of rosin and be no less than 15% by weight of the entire material formulation.

971-5.3 Glass Spheres: The glass spheres in the intermix shall consist of 50% Type 1 and 50% Type 3. Glass spheres shall meet the requirements of 971-2.

971-5.4 Sharp Silica Sand: Sharp silica sand used for bike lane symbols and pedestrian crosswalk lines shall meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>0 to 10</td>
</tr>
</tbody>
</table>

971-5.5 Physical Requirements: Laboratory samples shall be prepared in accordance with ASTM D49660 and shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Absorption</td>
<td>ASTM D570</td>
<td>-</td>
<td>0.5%</td>
</tr>
<tr>
<td>Softening Point</td>
<td>ASTM D36</td>
<td>195°F</td>
<td>-</td>
</tr>
<tr>
<td>Low Temperature Stress Resistance</td>
<td>AASHTO T250</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Water displacement</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Indentation Resistance</td>
<td>ASTM D2240*</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Shore Durometer, A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D256, Method A</td>
<td>1.0 N·m</td>
<td>-</td>
</tr>
</tbody>
</table>
971-5.5.1 Set To Bear Traffic Time: The thermoplastic shall set to bear traffic in not more than two minutes.

971-5.5.2 Retroreflectivity: The white and yellow pavement markings shall attain an initial retroreflectance of not less than 450 mcd/lx m² and not less than 350 mcd/lx m², respectively. The retroreflectance of the white and yellow pavement markings at the end of the three year service life shall not be less than 150 mcd/lx m².

971-5.5.3 Durability: Durability is the measured percent of thermoplastic material completely removed from the pavement. The thermoplastic material line loss must not exceed 5.0% at the end of the service life.

971-5.6 Application Properties: Application properties shall meet the requirements of Section 711.

971-5.7 Packing and Labeling: The thermoplastic material shall be packaged in suitable biodegradable or thermo-degradable containers which will not adhere to the product during shipment and storage. The container of thermoplastic material shall weigh approximately 50 lb. The label shall warn the user that the material shall be heated in the range as recommended by the manufacturer.

971-6 Preformed Thermoplastic Materials for Traffic Stripes.

971-6.1 General: Upon cooling to normal pavement temperature, these materials shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall have the option of formulating the material according to his own specifications. However, the requirements delineated in this Specification and Section 711 shall apply regardless of the type of formulation used. The pigment, glass spheres, and filler shall be well dispersed in the resin. The material shall be free from all skins, dirt and foreign objects.

971-6.2 Composition: The preformed thermoplastic shall consist of high quality materials, pigments and glass spheres or other reflective material uniformly distributed throughout their cross-sectional area, with a reflective layer of spheres or other reflective material embedded in the top surface.

971-6.3 Glass Spheres: Material shall contain no less than 30% glass spheres by weight.

971-6.4 Color: Materials shall meet the performance requirements specified in 971-1 and the following additional requirements. The initial luminance factor, Cap Y, shall not be less than 55.

971-6.5 Physical Requirements: Laboratory samples shall be prepared in accordance with ASTM D4960 and shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening Point</td>
<td>ASTM D36</td>
<td>195°F</td>
<td>-</td>
</tr>
<tr>
<td>Low Temperature Stress Resistance</td>
<td>AASHTO T250</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Indentation Resistance</td>
<td>ASTM D2240*</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Shore Durometer, A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D256, Method A**</td>
<td>1.0 N·m</td>
<td>-</td>
</tr>
</tbody>
</table>
Permanent Tape Materials for Traffic Stripes and Markings

General
- The materials for pavement stripes and markings shall consist of white or yellow weather-resistant reflective film as specified herein. The markings are classified as High Performance. The pigment, glass spheres, and filler shall be well dispersed in the resin. However, the requirements delineated in this Specification and Section 713 shall apply. The material shall be free from all skins, dirt and foreign objects.

Composition
- The pavement stripes and markings shall consist of high-quality plastic materials, pigments, and glass spheres uniformly distributed throughout their cross-sectional area, with a reflective layer of spheres embedded in the top surface.

Skid Resistance
- The surface of the stripes and markings shall provide a minimum skid resistance value of 35 BPN when tested according to ASTM E303. Bike lane symbols and pedestrian crosswalks shall provide a minimum skid resistance value of 55 BPN.

Thickness
- The QPL will list the specified thickness of each approved product.

Durability and Wear Resistance
- When properly applied, the material shall provide neat, durable stripes and markings. The materials shall provide a cushioned resilient substrate that reduces sphere crushing and loss. The film shall be weather resistant and, through normal wear, shall show no significant tearing, rollback or other signs of poor adhesion. Durability is the measured percent of pavement marking material completely removed from the pavement. The pavement marking material line loss must not exceed 5.0% of surface area at the end of its service life.

Conformability and Resealing
- The stripes and markings shall be capable of conforming to pavement contours, breaks and faults under traffic at pavement temperatures recommended by the manufacturer. The film shall be capable of use for patching worn areas of the same types of film in accordance with the manufacturer’s recommendations.
971-7.7 Tensile Strength: The stripes and markings shall have a minimum tensile strength of 40 psi when tested according to ASTM D638. A rectangular test specimen 6 inches by 1 inch by 0.05 inches minimum thickness shall be tested at a temperature range of 40 to 80°F using a jaw speed of 0.25 inch/min.

971-7.8 Elongation: The stripes and markings shall have a minimum elongation of 25% when tested in accordance with ASTM D 638.

971-7.9 Plastic Pull test: The stripes and markings shall support a dead weight of 4 lb for not less than five minutes at a temperature range of 70 to 80°F. Rectangular test specimen size shall be 6 inches by 1 inch by 0.05 inches minimum thickness.

971-7.10 Pigmentation: The pigment shall be selected and blended to provide a material which is white or yellow conforming to standard highway colors through the expected life of the stripes and markings.

971-7.11 Glass Spheres: The stripes and markings shall have glass retention qualities such that, when at room temperature 2 inches by 6 inches specimen is bent over a 0.5 inch diameter mandrel axis, a microscopic examination of the area on the mandrel shall show no more than 10% of the spheres with entrainment by the material of less than 40%. The bead adhesion shall be such that spheres are not easily removed when the film surface is scratched firmly with a thumbnail.

971-7.12 Retroreflectivity: The permanent tape materials for traffic stripes and markings shall have a service life of five years. The materials shall attain an initial retroreflectance of not less than 450 mcd/lx·m² for white and contrast markings and not less than 350 mcd/lx·m² for yellow markings. The pavement stripes and markings shall retain a minimum retroreflectance for two years of not less than 300 mcd/lx·m² for white and contrast markings and not less than 250 mcd/lx·m² for yellow markings. The retroreflectance of the white, yellow and contrast pavement markings at the end of the five year service life shall not be less than 150 mcd/lx·m².

971-8 Two Reactive Component Materials For Traffic Stripes And Markings.

971-8.1 General: Two reactive component materials intended for use under this Specification shall include, but not be limited to, epoxies, polyesters and urethanes. Upon curing, these materials shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall have the option of formulating the material according to his own specifications. However, the criteria outlined in this Specification and Section 709 shall apply regardless of the type of formulation used. The material shall be free from all skins, dirt and foreign objects.

971-8.2 Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂, Type II Rutile (white material only)</td>
<td>ASTM D476</td>
<td>minimum 10% by weight</td>
</tr>
<tr>
<td>Volatile Organic Content, (VOC)</td>
<td>ASTM D3960</td>
<td>maximum 150 g/L</td>
</tr>
</tbody>
</table>

971-8.3 Physical Requirements: The material shall meet the following criteria.
971-8.3.1 **Set To Bear Traffic Time:** The material shall set to bear traffic in not more than two minutes.

971-8.3.2 **Abrasion Resistance:** Test four samples per LOT using a Taber Abrader. The material shall be applied to specimen plates using a drawdown blade having a clearance of 26 mils. Air dry each sample for 30 minutes and bake at 220°F for 18 hours. Clean with a soft brush and weigh each sample. Abrace samples for 1,000 cycles with 500 g weights and CS-10 wheels. Clean the samples with a soft brush and weigh again. The average weight loss for the four plates shall not exceed 50 mg per plate.

971-8.3.3 **Retroreflectivity:** The white and yellow pavement markings shall attain an initial retroreflectance of not less than 450 mcd/lx m² and not less than 350 mcd/lx m², respectively. The retroreflectance of the white and yellow pavement markings at the end of the three year service life shall not be less than 150 mcd/lx m².

971-8.4 **Application Properties:** Application properties shall meet the requirements of Section 709.

971-8.5 **Packaging and Labeling:** The two reactive component material shall be placed in 55 gallon open-end steel drums with a re-usuble multi-seal sponge gasket. No more than 50 gallons of material shall be placed in any drum to allow for expansion during transport and storage. Other containers will be used for applicable products. Each container shall designate the color, generic type (e.g. epoxy), user information, manufacturer’s name and address, batch number and date of manufacture. Each batch manufactured shall have a unique number. The label shall warn the user of hazards associated with handling or using the material.

971-9 **Thermoplastic Material for Audible and Vibratory Traffic Stripes.**

971-9.1 **General:** Upon cooling to normal pavement temperature, the thermoplastic material shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall utilize alkyd based materials only and shall have the option of formulating the material according to his own specifications. However, the requirements delineated in this Specification shall apply regardless of the type of formulation used. The pigment, reflective elements, and filler shall be well dispersed in the resin. The material shall be free from all skins, dirt and foreign objects.

971-9.2 **Composition:**

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder</td>
<td></td>
<td>20.0% minimum</td>
<td>20.0% minimum</td>
</tr>
<tr>
<td>TiO₂, Type II Rutile</td>
<td>ASTM D476</td>
<td>10.0% minimum</td>
<td>-</td>
</tr>
<tr>
<td>Reflective Elements</td>
<td>AASHTO T250</td>
<td>% minimum per manufacturer</td>
<td>% minimum per manufacturer</td>
</tr>
<tr>
<td>Yellow Pigment</td>
<td></td>
<td>-</td>
<td>% minimum per manufacturer</td>
</tr>
</tbody>
</table>
The alkyd/maleic binder must consist of a mixture of synthetic resins (at least one synthetic resin must be solid at room temperature) and high boiling point plasticizers. At least one-half of the binder composition must be 100% maleic-modified glycerol of rosin and be no less than 15% by weight of the entire material formulation.

971-9.3 Retroreflective Elements: The reflective elements in the intermix shall be determined by the manufacturer and identified for the QPL System.

971-9.4 Physical Requirements: Laboratory samples shall be prepared in accordance with ASTM D4960 and shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Absorption</td>
<td>ASTM D570</td>
<td>-</td>
<td>0.5%</td>
</tr>
<tr>
<td>Softening Point</td>
<td>ASTM D36</td>
<td>210°F</td>
<td>-</td>
</tr>
<tr>
<td>Low Temperature Stress Resistance</td>
<td>AASHTO T250</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Water displacement</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Indentation Resistance</td>
<td>ASTM D2240*</td>
<td>65</td>
<td>-</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D256, Method A</td>
<td>1.0 N·m</td>
<td>-</td>
</tr>
<tr>
<td>Flash Point</td>
<td>ASTM D92</td>
<td>475°F</td>
<td>-</td>
</tr>
</tbody>
</table>

*The durometer and panel shall be at 80°F, but not exceeding 90°F with a 4.4 lb load applied. Instrument measurement shall be taken after 15 seconds.

971-9.4.1 Set To Bear Traffic Time: When applied at the temperatures and thickness specified by Section 701, the baseline material shall set to bear traffic in not more than two minutes. The audible bump shall set to bear traffic in not more than 10 minutes at ambient air temperatures of 80°F or less and in not more than 15 minutes for ambient air temperatures exceeding 80°F.

971-9.4.2 Retroreflectivity: The white and yellow pavement markings shall attain an initial retroreflectance of not less than 300 mcd/lx·m² and not less than 250 mcd/lx·m², respectively. The retroreflectance of the white and yellow pavement markings at the end of the three year service life shall not be less than 150 mcd/lx·m².

971-9.4.3 Durability: Durability is the measured percent of thermoplastic material completely removed from the pavement. The thermoplastic material line loss must not exceed 5.0% at the end of the three year service life. Durability shall also include flattening of the profile or raised portions of the line. The flattening of the profile or raised portion of the line shall not exceed 25% at the end of the three year service life.

971-9.5 Application Properties: Application properties shall meet the requirements of Section 701.

971-9.6 Packing and Labeling: The thermoplastic material shall be packaged in suitable biodegradable or thermo-degradable containers which will not adhere to the product during shipment and storage. The container of thermoplastic material shall weigh approximately 50 lb.
The label shall warn the user that the material shall be heated in the range as recommended by the manufacturer.

971-10 Thermoplastic Material for Wet Weather Pavement Markings.

971-10.1 General: Upon cooling to normal pavement temperature, the thermoplastic material shall produce an adherent, reflective pavement marking capable of resisting deformation by traffic. The manufacturer shall utilize alkyd based materials only and shall have the option of formulating the material according to their specifications. However, the requirements delineated in this specification shall apply regardless of the type of formulation used. The pigment, reflective elements, and filler shall be well dispersed in the resin. The material shall be free from all skins, dirt and foreign objects.

971-10.2 Composition:

<table>
<thead>
<tr>
<th>Component</th>
<th>Test Method</th>
<th>White</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder</td>
<td></td>
<td>20.0% minimum</td>
<td>20.0% minimum</td>
</tr>
<tr>
<td>TiO₂, Type II Rutile</td>
<td>ASTM D476</td>
<td>10.0% minimum</td>
<td>N/A</td>
</tr>
<tr>
<td>Reflective Elements (intmix)</td>
<td>AASHTO T250</td>
<td>% minimum per manufacturer</td>
<td>% minimum per manufacturer</td>
</tr>
<tr>
<td>Yellow Pigment</td>
<td></td>
<td>N/A</td>
<td>% minimum per manufacturer</td>
</tr>
<tr>
<td>Calcium Carbonate and Inert Filler</td>
<td></td>
<td>% minimum per manufacturer</td>
<td>% minimum per manufacturer</td>
</tr>
</tbody>
</table>

Percentages are by weight.

971-10.3 Retroreflective Elements: The reflective elements in the intermix shall be determined by the manufacturer and identified for the OPL System.

971-10.4 Physical Requirements: Laboratory samples shall be prepared in accordance with ASTM D4960 and shall meet the following criteria:

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Absorption</td>
<td>ASTM D570</td>
<td>-</td>
<td>0.5%</td>
</tr>
<tr>
<td>Softening Point</td>
<td>ASTM D36</td>
<td>200°F</td>
<td>-</td>
</tr>
<tr>
<td>Low Temperature Stress Resistance</td>
<td>AASHTO T250</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Water displacement</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Indentation Resistance</td>
<td>ASTM D2240*</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>ASTM D256, Method A</td>
<td>1.0 N·m</td>
<td>-</td>
</tr>
<tr>
<td>Flash Point</td>
<td>ASTM D92</td>
<td>475°F</td>
<td>-</td>
</tr>
</tbody>
</table>

*The durometer and panel shall be at 90°F with a 4.4 lb load applied. Instrument measurement shall be taken after 15 seconds.

971-10.4.1 Set To Bear Traffic Time: When applied at the temperatures and thickness specified by Section 702, the baseline material shall set to bear traffic in not more than two minutes. When the audible bump is required, the bump shall set to bear traffic in not more than 10 minutes at ambient air temperatures of 80°F or less and in not more than 15 minutes for ambient air temperatures exceeding 80°F.
971-10.4.2 Retroreflectivity: The white and yellow pavement markings shall attain an initial dry retroreflectivity of not less than 300 mcd/lx·m² and not less than 250 mcd/lx·m², respectively, and also attain an initial wet recovery retroreflectivity of not less than 150 mcd/lx·m² and not less than 125 mcd/lx·m², respectively. The dry retroreflectance of the white and yellow pavement markings at the end of the three year service life shall not be less than 150 mcd/lx·m², and also the wet recovery retroreflectivity at the end of the service life shall not be less than 75 mcd/lx·m². The retroreflectivity will be determined in accordance with Florida Method FM-5-541 for dry and ASTM E2177 (Bucket Method) for wet recovery.

971-10.4.3 Durability: Durability is the measured percent of thermoplastic material completely removed from the pavement. The thermoplastic material line loss must not exceed 5.0% at the end of the three year service life. When an audible bump is required, durability shall also include flattening of the profile or raised portions of the line. The flattening of the profile or raised portion of the line shall not exceed 25% at the end of the three year service life.

971-10.5 Application Properties: Application properties shall meet the requirements of Section 702.

971-10.6 Packing and Labeling: The thermoplastic material shall be packaged in suitable biodegradable or thermo-degradable containers which will not adhere to the product during shipment and storage. The container of thermoplastic material shall weigh approximately 50 lb. The label shall warn the user that the material shall be heated in the range as recommended by the manufacturer.
Florida State College at Jacksonville does not discriminate against any person on the basis of race, color, ethnicity, genetic information, national origin, religion, gender, marital status, disability, or age in its programs or activities. Inquiries regarding the non-discrimination policies may be directed to the College’s Equity Officer, 501 West State Street, Jacksonville, Florida 32202 | (904) 632-3221 or equityofficer@fscj.edu.

Florida State College at Jacksonville is a member of the Florida College System and is not affiliated with any other public or private university or college in Florida or elsewhere.