Section 03 41 00
PRECAST STRUCTURAL CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including FDOT DIVISION 1 – GENERAL REQUIREMENTS & COVENANTS Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Precast structural concrete.
 2. Thin-brick-faced, precast structural concrete.
 3. Precast structural concrete with commercial architectural finish.
 B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for concrete topping and placing connection anchors in concrete.
 2. Section 051200 "Structural Steel Framing" for furnishing and installing connections attached to structural-steel framing.
 3. Section 055000 "Metal Fabrications" for kickers and other miscellaneous steel shapes.
 4. Section 071900 "Water Repellents" for water-repellent finish treatments.

1.3 DEFINITIONS

1.4 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
B. Sustainable Design Submittals:

1. **Product Data**: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.

2. **Product Certificates**: For products and materials required to comply with requirements for regional materials, certificates indicating location of material manufacturer and point of extraction, harvest, or recovery for each raw material. Include statement indicating distance to Project, cost for each regional material, and fraction by weight that is considered regional.

3. **Design Mixtures**: For each concrete mixture containing fly ash as a replacement for portland cement or other portland cement replacements and for equivalent concrete mixtures that do not contain portland cement replacements.

C. **Design Mixtures**: For each precast concrete mixture. Include compressive strength and, if required, water-absorption tests.

D. **Shop Drawings**:

1. Include member locations, plans, elevations, dimensions, shapes and sections, openings, support conditions, and types of reinforcement, including special reinforcement.

2. Detail fabrication and installation of precast structural concrete units, including connections at member ends and to adjoining construction.

3. Indicate joints, reveals, drips, chamfers, and extent and location of each surface finish.

4. Indicate separate face and backup mixture locations and thicknesses.

5. Indicate type, size, and length of welded connections by AWS standard symbols.

6. Detail loose and cast-in hardware, lifting and erection inserts, connections, and joints.

7. Indicate locations, tolerances, and details of anchorage devices to be embedded in or attached to structure or other construction.

8. Include and locate openings larger than 10 inches. Where additional structural support is required, include header design.

9. Indicate location of each precast structural concrete unit by same identification mark placed on panel.

10. Indicate relationship of precast structural concrete units to adjacent materials.

11. Indicate locations, dimensions, and details of thin-brick units, including corner units and special shapes, and joint treatment.

12. Indicate estimated camber for precast floor slabs with concrete toppings.

13. Indicate shim sizes and grouting sequence.
14. If design modifications are proposed to meet performance requirements and field conditions, submit design calculations and Shop Drawings. Do not adversely affect the appearance, durability, or strength of units when modifying details or materials and maintain the general design concept.

E. Samples:

1. For each type of finish indicated on exposed surfaces of precast structural concrete units with architectural finish, in sets of three, representative of finish, color, and texture variations expected; approximately 12 by 12 by 2 inches.
 a. Where other faces of precast concrete unit are exposed, include Samples illustrating workmanship, color, and texture of backup concrete as well as facing concrete.

2. Samples for each thin-brick unit required, showing full range of color and texture expected. Include Samples showing color and texture of joint treatment.
 a. Grout Samples for Initial Selection: Color charts consisting of actual sections of grout showing manufacturer's full range of colors.

F. Delegated-Design Submittal: For precast structural concrete indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer, registered in the State of Florida, responsible for their preparation.

 1. Show precast structural concrete unit types, connections, types of reinforcement, including special reinforcement, and concrete cover on reinforcement. Indicate location, type, magnitude, and direction of loads imposed on the building structural frame from precast structural concrete.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and fabricator.

B. Welding certificates.

C. Material Certificates: For the following:
 1. Cementitious materials.
 2. Reinforcing materials and prestressing tendons.
 3. Admixtures.
5. Insulation.
7. Thin-brick units and accessories.

D. Material Test Reports: For aggregates, by a qualified testing agency.

E. Preconstruction test reports.

F. Source quality-control reports.

G. Field quality-control and special inspection reports.

1.7 QUALITY ASSURANCE

A. Fabricator Qualifications: A firm that assumes responsibility for engineering precast structural concrete units to comply with performance requirements. Responsibility includes preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.

1. Designated as a PCI-certified plant as follows:
 a. Group C, Category C3 - Prestressed Straight-Strand Structural Members.
 b. Group CA, Category C3A - Prestressed Straight-Strand Structural Members.

2. Fabricator is located within 500 miles of Project site.

B. Installer Qualifications: A precast concrete erector qualified and designated by PCI's Certificate of Compliance, to erect Category S2 - Complex Structural Systems.

C. Installer Qualifications: An experienced precast concrete erector who has retained a "PCI-Certified Field Auditor" to conduct a field audit of a project installed by erector in Category S2 - Complex Structural Systems and who can produce an Erectors' Post Audit Declaration, according to PCI MNL 127, "PCI Erector's Manual - Standards and Guidelines for the Erection of Precast Concrete Products."

D. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

E. Quality-Control Standard: For manufacturing procedures, testing requirements, and quality-control recommendations for types of units required, comply with
PCI MNL 116, "Manual for Quality Control for Plants and Production of Structural Precast Concrete Products."

F. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.4/D1.4M, "Structural Welding Code - Reinforcing Steel."

G. Sample Panels: After sample approval and before fabricating precast structural concrete units with architectural finish and/or thin-brick facing, produce a minimum of two sample panels approximately 16 sq. ft. in area for review by Architect. Incorporate full-scale details of architectural features, finishes, textures, and transitions in sample panels.
 1. Locate panels where indicated or, if not indicated, as directed by Architect.
 2. Damage part of an exposed-face surface for each finish, color, and texture, and demonstrate adequacy of repair techniques proposed for repair of surface blemishes.
 3. After approval of repair technique, maintain one sample panel at fabricator's plant and one at Project site in an undisturbed condition as a standard for judging the completed Work.
 4. Demolish and remove sample panels when directed.

H. Mockups: After sample panel approval but before production of precast structural concrete units with architectural finish and/or thin-brick facing, construct full-sized mockups to verify selections made under Sample submittals and to demonstrate aesthetic effects and to set quality standards for materials and execution.
 1. Build mockup as indicated on Drawings including sealants and precast structural concrete units with an architectural finish complete with anchors, connections, flashings, and joint fillers.
 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 COORDINATION

A. Furnish loose connection hardware and anchorage items to be embedded in or attached to other construction before starting that Work. Provide locations,
setting diagrams, templates, instructions, and directions, as required, for installation.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Support units during shipment on nonstaining shock-absorbing material in same position as during storage.

B. Store units with adequate bracing and protect units to prevent contact with soil, to prevent staining, and to prevent cracking, distortion, warping or other physical damage.
 1. Store units with dunnage across full width of each bearing point unless otherwise indicated.
 2. Place adequate dunnage of even thickness between each unit.
 3. Place stored units so identification marks are clearly visible, and units can be inspected.

C. Handle and transport units in a manner that avoids excessive stresses that cause cracking or damage.

D. Lift and support units only at designated points indicated on Shop Drawings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, registered in the State of Florida, to design precast structural concrete units.

B. Design Standards: Comply with ACI 318 and with design recommendations in PCI MNL 120, "PCI Design Handbook - Precast and Prestressed Concrete," applicable to types of precast structural concrete units indicated.

C. Fire-Resistance Calculations: Where indicated, provide precast structural concrete units whose fire resistance meets prescriptive requirements of authorities having jurisdiction or has been calculated according to PCI MNL 124, "Design for Fire Resistance of Precast Prestressed Concrete," and is acceptable to authorities having jurisdiction.

D. Structural Performance: Precast structural concrete units and connections shall withstand design loads indicated within limits and under conditions indicated.
E. Structural Performance: Provide precast structural concrete units and connections capable of withstanding design loads within limits and under conditions indicated on the project drawings.

1. Design precast structural concrete framing system and connections to maintain clearances at openings, to allow for fabrication and construction tolerances, to accommodate live-load deflection, shrinkage and creep of primary building structure, and other building movements. Maintain precast structural concrete deflections within limits of ACI 318.
 a. Thermal Movements: Allow for in-plane thermal movements resulting from annual ambient temperature changes of plus 30 to plus 100 deg F.

2. Fire-Resistance Rating: Select material and minimum thicknesses to provide indicated fire rating.

3. Vehicular Impact Loads: Design spandrel beams acting as vehicular barriers for passenger cars, in accordance with the 2010 Florida Building Code, with load applied horizontally in any direction to the spandrel beam, with anchorages or attachments capable of transferring this load to the structure. Design spandrel beams assuming the load to act at a height of 18 or 27 inches above the floor or ramp surface, whichever is more severe, on an area not to exceed 1 sq. ft.

2.2 MOLD MATERIALS

A. Molds: Rigid, dimensionally stable, non-absorptive material, warp and buckle free, that provides continuous precast concrete surfaces within fabrication tolerances indicated; nonreactive with concrete and suitable for producing required finishes.

1. Mold-Release Agent: Commercially produced form-release agent that does not bond with, stain, or adversely affect precast concrete surfaces and does not impair subsequent surface or joint treatments of precast concrete.

B. Form Liners: Units of face design, texture, arrangement, and configuration indicated and to match those used for precast concrete design reference sample. Furnish with manufacturer's recommended form-release agent that does not bond with, stain, or adversely affect precast concrete surfaces and does not impair subsequent surface or joint treatments of precast concrete.

C. Surface Retarder: Chemical set retarder, capable of temporarily delaying setting of newly placed concrete mixture to depth of reveal specified.
2.3 REINFORCING MATERIALS
 A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 90 percent.
 B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
 C. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
 D. Steel Bar Mats: ASTM A 184/A 184M, fabricated from ASTM A 615/A 615M, Grade 60, deformed bars, assembled with clips.
 F. Supports: Suspend reinforcement from back of mold or use bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place according to PCI MNL 116.

2.4 PRESTRESSING TENDONS
 A. Pretensioning Strand: ASTM A 416/A 416M, Grade 250 or Grade 270, uncoated, seven-wire or ASTM A 886/A 886M, Grade 270, indented, seven-wire, low-relaxation strand.

2.5 CONCRETE MATERIALS
 A. Regional Materials: Precast structural concrete shall be manufactured from aggregates and cement that have been extracted or recovered, as well as manufactured, within 500 miles of Project site.
 B. Portland Cement: ASTM C 150/C 150M, Type I or Type III, gray, unless otherwise indicated.
 1. For surfaces exposed to view in finished structure, use gray or white cement, of same type, brand, and mill source.
 C. Supplementary Cementitious Materials:
 1. Fly Ash: ASTM C 618, Class C or F, with maximum loss on ignition of 3 percent.
2. Metakaolin: ASTM C 618, Class N.
3. Silica Fume: ASTM C 1240, with optional chemical and physical requirement.
4. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

D. Normal-Weight Aggregates: Except as modified by PCI MNL 116, ASTM C 33/C 33M, with coarse aggregates complying with Class 5S. Stockpile fine and coarse aggregates for each type of exposed finish from a single source (pit or quarry) for Project.
 1. Face-Mixture-Coarse Aggregates: Selected, hard, and durable; free of material that reacts with cement or causes staining; to match selected finish sample.
 2. Face-Mixture-Fine Aggregates: Selected, natural or manufactured sand compatible with coarse aggregate to match approved finish sample.

E. Water: Potable; free from deleterious material that may affect color stability, setting, or strength of concrete and complying with chemical limits of PCI MNL 116.

F. Air-Entraining Admixture: ASTM C 260, certified by manufacturer to be compatible with other required admixtures.

G. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and to not contain calcium chloride, or more than 0.15 percent chloride ions or other salts by weight of admixture.
 1. Water-Reducing Admixtures: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. Water-Reducing and Accelerating Admixture: ASTM C 494/C 494M, Type E.
 5. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 6. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 7. Plasticizing Admixture: ASTM C 1017/C 1017M, Type I.
 8. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
 9. Corrosion-Inhibiting Admixture: ASTM C 1582/C 1582M.
2.6 STEEL CONNECTION MATERIALS

A. Carbon-Steel Shapes and Plates: ASTM A 36/A 36M.

B. Carbon-Steel-Headed Studs: ASTM A 108, Grade 1010 through 1020, cold finished, AWS D1.1/D1.1M, Type A or B, with arc shields and with minimum mechanical properties of PCI MNL 116.

C. Carbon-Steel Plate: ASTM A 283/A 283M, Grade C.

D. Malleable-Iron Castings: ASTM A 47/A 47M, Grade 32510 or Grade 35028.

F. High-Strength, Low-Alloy Structural Steel: ASTM A 572/A 572M.

G. Carbon-Steel Structural Tubing: ASTM A 500/A 500M, Grade B or Grade C.

H. Wrought Carbon-Steel Bars: ASTM A 675/A 675M, Grade 65.

I. Deformed-Steel Wire or Bar Anchors: ASTM A 496/A 496M or ASTM A 706/A 706M.

J. Carbon-Steel Bolts and Studs: ASTM A 307, Grade A; carbon-steel, hex-head bolts and studs; carbon-steel nuts, ASTM A 563; and flat, unhardened steel washers, ASTM F 844.

K. High-Strength Bolts and Nuts: ASTM A 325 or ASTM A 490 Type 1, heavy hex steel structural bolts; heavy hex carbon-steel nuts, ASTM A 563; and hardened carbon-steel washers, ASTM F 436.

1. Do not zinc coat ASTM A 490 bolts.

L. Zinc-Coated Finish: For exterior steel items and items indicated for galvanizing, apply zinc coating by hot-dip process according to ASTM A 123/A 123M or ASTM A 153/A 153M or electrodeposition according to ASTM B 633, SC 3, Types 1 and 2.

1. For steel shapes, plates, and tubing to be galvanized, limit silicon content of steel to less than 0.03 percent or to between 0.15 and 0.25 percent or limit sum of silicon and 2.5 times phosphorous content to 0.09 percent.

2. Galvanizing Repair Paint: High-zinc-dust-content paint with dry film containing not less than 94 percent zinc dust by weight, and complying with DOD-P-21035B or SSPC-Paint 20.

M. Shop-Primed Finish: Prepare surfaces of nongalvanized-steel items, except those surfaces to be embedded in concrete, according to requirements in
SSPC-SP 3, and shop apply lead- and chromate-free, rust-inhibitive primer, complying with performance requirements in MPI 79 according to SSPC-PA 1.

N. Welding Electrodes: Comply with AWS standards.

O. Precast Accessories: Provide clips, hangers, plastic or steel shims, and other accessories required to install precast structural concrete units.

2.7 STAINLESS-STEEL CONNECTION MATERIALS

A. Stainless-Steel Plate: ASTM A 666, Type 304, Type 316, or Type 201.

B. Stainless-Steel Bolts and Studs: ASTM F 593, Alloy Group 1 or 2, hex-head bolts and studs; ASTM F 594, Alloy Group 1 or 2 stainless-steel nuts; and flat, stainless-steel washers.

1. Lubricate threaded parts of stainless-steel bolts with an antiseize thread lubricant during assembly.

C. Stainless-Steel-Headed Studs: ASTM A 276, Alloy 304 or 316, with minimum mechanical properties of PCI MNL 116.

2.8 BEARING PADS

A. Provide one of the following bearing pads for precast structural concrete units as recommended by precast fabricator for application:

1. Elastomeric Pads: AASHTO M 251, plain, vulcanized, 100 percent polychloroprene (neoprene) elastomer, molded to size or cut from a molded sheet, 50 to 70 Shore, Type A durometer hardness, ASTM D 2240; minimum tensile strength 2250 psi, ASTM D 412.

2. Random-Oriented-Fiber-Reinforced Elastomeric Pads: Preformed, randomly oriented synthetic fibers set in elastomer. 70 to 90 Shore, Type A durometer hardness, ASTM D 2240; capable of supporting a compressive stress of 3000 psi with no cracking, splitting, or delaminating in the internal portions of pad. Test one specimen for every 200 pads used in Project.

3. Cotton-Duck-Fabric-Reinforced Elastomeric Pads: Preformed, horizontally layered cotton-duck fabric bonded to an elastomer; 80 to 100 Shore, Type A durometer hardness, ASTM D 2240; complying with AASHTO's "AASHTO LRFD Bridge Design Specifications," Division II, Section 18.10.2; or with MIL-C-882E.

4. Frictionless Pads: PTFE, glass-fiber reinforced, bonded to stainless- or mild-steel plate, or random-oriented-fiber-reinforced elastomeric pads; of type required for in-service stress.

2.9 ACCESSORIES

A. Reglets: Specified in Section 076200 "Sheet Metal Flashing and Trim."

B. Precast Accessories: Provide clips, hangers, high-density plastic or steel shims, and other accessories required to install structural precast concrete units.

2.10 GROUT MATERIALS

A. Sand-Cement Grout: Portland cement, ASTM C 150/C 150M, Type I, and clean, natural sand, ASTM C 144 or ASTM C 404. Mix at ratio of 1 part cement to 2-1/2 to 3 parts sand, by volume, with minimum water required for placement and hydration. Water-soluble chloride ion content less than 0.06 percent by weight of cement when tested according to ASTM C 1218/C 1218M.

B. Nonmetallic, Nonshrink Grout: Packaged, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, portland cement, shrinkage-compensating agents, plasticizing and water-reducing agents, complying with ASTM C 1107/C 1107M, Grade A for drypack and Grades B and C for flowable grout and of consistency suitable for application within a 30-minute working time. Water-soluble chloride ion content less than 0.06 percent by weight of cement when tested according to ASTM C 1218/C 1218M.

C. Epoxy-Resin Grout: Two-component, mineral-filled epoxy resin; ASTM C 881/C 881M, of type, grade, and class to suit requirements.

2.11 THIN BRICK AND ACCESSORIES

A. Thin Brick: Thickness not less than 1/2 inch or more than 1 inch thick, and as follows:

1. Dimensional Tolerances: Plus 0 inch or minus 1/16 inch for any dimension 8 inches or less and plus 0 inch or minus 3/32 inch for any dimension more than 8 inches.
2. Out-of-Square Tolerance: Plus or minus 1/16 inch.
3. Warpage Tolerance: Plus 0 inch or minus 1/16 inch.
4. Variation of Shape from Specified Angle: Plus or minus one degree.
5. Modulus of Rupture: Not less than 250 psi when tested according to ASTM C 67.
6. Tensile Bond Strength: Not less than 150 psi when tested before and after freeze-thaw test according to ASTM E 488 as modified. Adhere a steel plate with a welded rod on a single thin-brick face with epoxy for each test.
7. 24-Hour Cold-Water Absorption: Not more than 6 percent when tested according to ASTM C 67.
8. Freeze-Thaw Resistance: No detectable disintegration or separation after 300 freezing-and-thawing cycles when tested according to ASTM C 666/C 666M, Method B.
9. Chemical Resistance: Tested according to ASTM C 650 and rated "not affected."
10. Efflorescence: Tested according to ASTM C 67 and rated "not effloresced."

B. Regional Materials: Thin brick shall be manufactured within 500 miles of Project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.

C. Special Shapes: Include corners, edge corners, and end edge corners.

D. Face Size: 3-5/8 inches high by 11-5/8 inches long.

E. Face Color and Texture: Match Architect's samples.

2.12 INSULATED FLAT-WALL PANEL ACCESSORIES

A. Polyisocyanurate Board Insulation: ASTM C 591, Type I, 1.8 lb/cu. ft. unfaced, with thickness of 2 inches.

B. Wythe Connectors: Non-conductive, glass-fiber-reinforced vinylester connectors manufactured to connect wythes of precast concrete panels.

2.13 CONCRETE MIXTURES

A. Prepare design mixtures for each type of precast concrete required.

1. Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.

2. Limit use of fly ash to 35 percent replacement of portland cement by weight and ground granulated blast-furnace slag to 50 percent of portland cement by weight; metakaolin and silica fume to 10 percent of portland cement by weight.
B. Design mixtures may be prepared by a qualified independent testing agency or by qualified precast plant personnel at precast structural concrete fabricator's option.

C. Limit water-soluble chloride ions to maximum percentage by weight of cement permitted by ACI 318 or PCI MNL 116 when tested according to ASTM C 1218/C 1218M.

D. Normal-Weight Concrete Mixtures: Proportion face and backup mixtures or full-depth mixtures, at fabricator's option by either laboratory trial batch or field test data methods according to ACI 211.1, with materials to be used on Project, to provide normal-weight concrete with the following properties:

2. Maximum Water-Cementitious Materials Ratio: 0.45.

E. Water Absorption: For structural precast concrete with an architectural finish, limit water absorption to 6 percent by weight or 14 percent by volume, tested according to ASTM C 642, except for boiling requirement.

F. Lightweight Concrete Backup Mixtures: Proportion mixtures by either laboratory trial batch or field test data methods according to ACI 211.2, with materials to be used on Project, to provide lightweight concrete with the following properties:

2. Unit Weight: Calculated equilibrium unit weight of 115 lb/cu. ft., plus or minus 3 lb/cu. ft., according to ASTM C 567.

G. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content complying with PCI MNL 116.

H. When included in design mixtures, add other admixtures to concrete mixtures according to manufacturer's written instructions.

I. Concrete Mix Adjustments: Concrete mix design adjustments may be proposed if characteristics of materials, Project conditions, weather, test results, or other circumstances warrant.

2.14 MOLD FABRICATION

A. Molds: Accurately construct molds, mortar tight, of sufficient strength to withstand pressures due to concrete-placement operations and temperature changes and for prestressing and detensioning operations. Coat contact surfaces of molds with release agent before reinforcement is placed. Avoid contamination of reinforcement and prestressing tendons by release agent.
1. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and supports to maintain stability of liners during concrete placement. Coat form liner with form-release agent.

B. Maintain molds to provide completed precast structural concrete units of shapes, lines, and dimensions indicated, within fabrication tolerances specified.

1. Form joints are not permitted on faces of structural precast concrete with an architectural finish that is exposed to view in the finished work.
2. Edge and Corner Treatment: Uniformly chamfered.

2.15 THIN-BRICK FACINGS

A. Place form-liner templates accurately to provide grid for thin-brick facings. Provide solid backing and supports to maintain stability of liners while placing thin bricks and during concrete placement.

B. Securely place thin-brick units face down into form-liner pockets and place concrete backing mixture.

C. Completely fill joint cavities between thin-brick units with sand-cement mortar, and place precast concrete backing mixture while sand-cement mortar is still fluid enough to ensure bond.

D. Clean faces and joints of thin-brick facing.

2.16 FABRICATION

A. Cast-in Anchors, Inserts, Plates, Angles, and Other Anchorage Hardware: Fabricate anchorage hardware with sufficient anchorage and embedment to comply with design requirements. Accurately position for attachment of loose hardware, and secure in place during precasting operations. Locate anchorage hardware where it does not affect position of main reinforcement or concrete placement.

1. Weld-headed studs and deformed bar anchors used for anchorage according to AWS D1.1/D1.1M and AWS C5.4, "Recommended Practices for Stud Welding."

B. Furnish loose hardware items including steel plates, clip angles, seat angles, anchors, dowels, cramps, hangers, and other hardware shapes for securing precast structural concrete units to supporting and adjacent construction.

C. Cast-in reglets, slots, holes, and other accessories in precast structural concrete units as indicated on the Contract Drawings.
D. Cast-in openings larger than 10 inches in any dimension. Do not drill or cut openings or prestressing strand without Architect's approval.

E. Reinforcement: Comply with recommendations in PCI MNL 116 for fabricating, placing, and supporting reinforcement.

1. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy the bond with concrete. When damage to epoxy-coated reinforcement exceeds limits specified in ASTM A 775/A 775M, repair with patching material compatible with coating material and epoxy coat bar ends after cutting.

2. Accurately position, support, and secure reinforcement against displacement during concrete-placement and consolidation operations. Completely conceal support devices to prevent exposure on finished surfaces.

3. Place reinforcing steel and prestressing strand to maintain at least 3/4-inch minimum concrete cover. Increase cover requirements for reinforcing steel to 1-1/2 inches when units are exposed to corrosive environment or severe exposure conditions. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position while placing concrete. Direct wire tie ends away from finished, exposed concrete surfaces.

4. Install welded wire fabric in lengths as long as practicable. Lap adjoining pieces at least one full mesh spacing and wire tie laps, where required by design. Offset laps of adjoining widths to prevent continuous laps in either direction.

F. Reinforce precast structural concrete units to resist handling, transportation, and erection stresses and specified in-place loads.

G. Prestress tendons for precast structural concrete units by either pretensioning or post-tensioning methods. Comply with PCI MNL 116.

1. Delay detensioning or post-tensioning of precast, prestressed structural concrete units until concrete has reached its indicated minimum design release compressive strength as established by test cylinders cured under same conditions as concrete unit.

2. Detension pretensioned tendons either by gradually releasing tensioning jacks or by heat cutting tendons, using a sequence and pattern to prevent shock or unbalanced loading.

3. If concrete has been heat cured, detension while concrete is still warm and moist to avoid dimensional changes that may cause cracking or undesirable stresses.

4. Protect strand ends and anchorages with bituminous, zinc-rich, or epoxy paint to avoid corrosion and possible rust spots.
5. Protect strand ends and anchorages with a minimum of 1-inch-thick, nonmetallic, nonshrink, grout mortar and sack rub surface. Coat or spray the inside surfaces of pocket with bonding agent before installing grout.

H. Comply with requirements in PCI MNL 116 and in this Section for measuring, mixing, transporting, and placing concrete. After concrete batching, no additional water may be added.

I. Place face mixture to a minimum thickness after consolidation of the greater of 1 inch or 1.5 times the maximum aggregate size, but not less than the minimum reinforcing cover specified.

J. Place concrete in a continuous operation to prevent cold joints or planes of weakness from forming in precast concrete units.

1. Place backup concrete mixture to ensure bond with face-mixture concrete.

K. Thoroughly consolidate placed concrete by vibration without dislocating or damaging reinforcement and built-in items, and minimize pour lines, honeycombing, or entrapped air voids on surfaces. Use equipment and procedures complying with PCI MNL 116.

1. Place self-consolidating concrete without vibration according to PCI TR-6, "Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants." Ensure adequate bond between face and backup concrete, if used.

L. Comply with PCI MNL 116 procedures for hot- and cold-weather concrete placement.

M. Identify pickup points of precast structural concrete units and orientation in structure with permanent markings, complying with markings indicated on Shop Drawings. Imprint or permanently mark casting date on each precast structural concrete unit on a surface that does not show in finished structure.

N. Cure concrete, according to requirements in PCI MNL 116, by moisture retention without heat or by accelerated heat curing using live steam or radiant heat and moisture. Cure units until compressive strength is high enough to ensure that stripping does not have an effect on performance or appearance of final product.

O. Discard and replace precast structural concrete units that do not comply with requirements, including structural, manufacturing tolerance, and appearance, unless repairs meet requirements in PCI MNL 116 and meet Architect's approval.
2.17 CASTING INSULATED WALL PANELS

A. Cast, screed, and consolidate wythe supported by mold.

B. Place insulation boards abutting edges and ends of adjacent boards. Insert wythe connectors through insulation, and consolidate concrete around connectors according to connector manufacturer's written instructions.

C. Ensure bottom wythe and insulation layer are not disturbed after bottom wythe reaches initial set.

D. Cast, screed, and consolidate top wythe to meet required finish.

E. Maintain temperature below 150 deg F in bottom concrete wythe.

2.18 FABRICATION TOLERANCES

A. Fabricate precast structural concrete units to shapes, lines, and dimensions indicated so each finished unit complies with PCI MNL 116 product dimension tolerances as well as position tolerances for cast-in items.

B. Thin-Brick-Faced Precast Structural Concrete Units: Restrict the following misalignments to 2 percent of number of thin bricks in a unit:

1. Alignment of Mortar Joints:
 b. Alignment with Panel Centerline: Plus or minus 1/8 inch.

2. Variation in Width of Exposed Mortar Joints: Plus or minus 1/8 inch.

3. Tipping of Individual Thin Bricks from the Panel Plane of Exposed Thin-Brick Surface: Plus 0 inch; minus 1/4 inch less than or equal to depth of form-liner joint.

4. Exposed Thin-Brick Surface Parallel to Primary Control Surface of Panel: Plus 1/4 inch; minus 1/8 inch.

5. Individual Thin-Brick Step in Face from Panel Plane of Exposed Thin-Brick Surface: Plus 0 inch; minus 1/4 inch less than or equal to depth of form-liner joint.
2.19 COMMERCIAL FINISHES

A. Grade B Finish: Fill air pockets and holes larger than 1/4 inch in diameter with sand-cement paste matching color of adjacent surfaces. Fill air holes greater than 1/8 inch in width that occur more than once per 2 sq. in. Grind smooth form offsets or fins larger than 1/8 inch. Repair surface blemishes due to holes or dents in molds. Discoloration at form joints is permitted.

B. Smooth, steel trowel finish unformed surfaces. Consolidate concrete, bring to proper level with straightedge, float, and trowel to a smooth, uniform finish.

C. Apply roughened surface finish according to ACI 318 to precast concrete units that receive concrete topping after installation.

2.20 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate precast structural concrete fabricator's quality-control and testing methods.

1. Allow testing agency access to material storage areas, concrete production equipment, concrete placement, and curing facilities. Cooperate with testing agency and provide samples of materials and concrete mixtures as may be requested for additional testing and evaluation.

B. Testing: Test and inspect precast structural concrete according to PCI MNL 116 requirements and ASTM C 1610/C 1610M, ASTM C 1611/C 1611M, ASTM C 1621/C 1621M, and ASTM C 1712/C 1712M.

1. Test and inspect self-consolidating concrete according to PCI TR-6.

C. Strength of precast structural concrete units is considered deficient if units fail to comply with ACI 318 requirements for concrete strength.

D. If there is evidence that strength of precast concrete units may be deficient or may not comply with ACI 318 requirements, employ a qualified testing agency to obtain, prepare, and test cores drilled from hardened concrete to determine compressive strength according to ASTM C 42/C 42M.

1. A minimum of three representative cores shall be taken from units of suspect strength, from locations directed by Architect.
2. Test cores in an air-dry condition or, if units are wet under service conditions, test cores after immersion in water in a wet condition.
3. Strength of concrete for each series of three cores is considered satisfactory if average compressive strength is equal to at least 85 percent
of 28-day design compressive strength and no single core is less than 75 percent of 28-day design compressive strength.

4. Report test results in writing on same day that tests are performed, with copies to Architect, Contractor, and precast concrete fabricator. Test reports include the following:

 a. Project identification name and number.
 b. Date when tests were performed.
 c. Name of precast concrete fabricator.
 d. Name of concrete testing agency.
 e. Identification letter, name, and type of precast concrete unit(s) represented by core tests; design compressive strength; type of break; compressive strength at breaks, corrected for length-diameter ratio; and direction of applied load to core in relation to horizontal plane of concrete as placed.

E. Patching: If core test results are satisfactory and precast structural concrete units comply with requirements, clean and dampen core holes and solidly fill with same precast concrete mixture that has no coarse aggregate, and finish to match adjacent precast concrete surfaces.

F. Defective Units: Discard and replace precast structural concrete units that do not comply with requirements, including strength, manufacturing tolerances, and color and texture range. Chipped, spalled, or cracked units may be repaired, subject to Architect's approval. Architect reserves the right to reject precast units that do not match approved samples, sample panels, and mockups. Replace unacceptable units with precast concrete units that comply with requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine supporting structural frame or foundation and conditions for compliance with requirements for installation tolerances, bearing surface tolerances, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. Do not install precast concrete units until supporting, cast-in-place concrete has attained minimum allowable design compressive strength and until supporting steel or other structure is structurally ready to receive loads from precast concrete units.
3.2 INSTALLATION

A. Install clips, hangers, bearing pads, and other accessories required for connecting precast structural concrete units to supporting members and backup materials.

B. Erect precast structural concrete level, plumb, and square within specified allowable tolerances. Provide temporary structural framing, shoring, and bracing as required to maintain position, stability, and alignment of units until permanent connections are complete.

1. Install temporary steel or plastic spacing shims or bearing pads as precast structural concrete units are being erected. Tack weld steel shims to each other to prevent shims from separating.
2. Maintain horizontal and vertical joint alignment and uniform joint width as erection progresses.
3. Remove projecting lifting devices and use plastic patch caps or sand-cement grout to fill voids within recessed lifting devices flush with surface of adjacent precast surfaces when recess is exposed.

C. Connect precast structural concrete units in position by bolting, welding, grouting, or as otherwise indicated on Shop Drawings. Remove temporary shims, wedges, and spacers as soon as practical after connecting and grouting are completed.

1. Do not permit connections to disrupt continuity of roof flashing.

D. Field cutting of precast units is not permitted without approval of Architect and the Structural Engineer of Record.

E. Fasteners: Do not use drilled or powder-actuated fasteners for attaching accessory items to precast, prestressed concrete units.

F. Welding: Comply with applicable requirements in AWS D1.1/D1.1M and AWS D1.4/D1.4M for welding, welding electrodes, appearance, quality of welds, and methods used in correcting welding work.

1. Protect precast structural concrete units and bearing pads from damage by field welding or cutting operations, and provide noncombustible shields as required.
2. Clean weld-affected steel surfaces with chipping hammer followed by brushing, and apply a minimum 4.0-mil-thick coat of galvanized repair paint to galvanized surfaces according to ASTM A 780/A 780M.
3. Visually inspect welds and remove, reweld, or repair incomplete and defective welds.
G. At bolted connections, use lock washers, tack welding, or other approved means to prevent loosening of nuts after final adjustment.

1. Where slotted connections are used, verify bolt position and tightness. For sliding connections, properly secure bolt but allow bolt to move within connection slot.
2. For slip-critical connections, use one of the following methods to assure proper bolt pretension:
 d. Direct-Tension Control Bolt: ASTM F 1852.
3. For slip-critical connections, use method and inspection procedure approved by Architect and coordinated with inspection agency.

H. Grouting or Dry-Packing Connections and Joints: Grout connections and joints and open spaces at keyways, connections, and joints where required or indicated on Shop Drawings. Retain flowable grout in place until hard enough to support itself. Alternatively, pack spaces with stiff dry-pack grout material, tamping until voids are completely filled.

1. Place grout and finish smooth, level, and plumb with adjacent concrete surfaces.
2. Fill joints completely without seepage to other surfaces.
3. Trowel top of grout joints on roofs smooth and uniform. Finish transitions between different surface levels not steeper than 1 to 12.
4. Place grout end cap or dam in voids at ends of hollow-core slabs.
5. Promptly remove grout material from exposed surfaces before it affects finishes or hardens.
6. Keep grouted joints damp for not less than 24 hours after initial set.

3.3 ERECTION TOLERANCES

A. Erect precast structural concrete units level, plumb, square, and in alignment without exceeding the noncumulative erection tolerances of PCI MNL 135.
B. Minimize variations between adjacent slab members by jacking, loading, or other method recommended by fabricator and approved by Architect.
3.4 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:

1. Erection of precast structural concrete members.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Visually inspect field welds and test according to ASTM E 165 or to ASTM E 709 and ASTM E 1444. High-strength bolted connections are subject to inspections.

D. Testing agency will report test results promptly and in writing to Contractor and Architect.

E. Repair or remove and replace work where tests and inspections indicate that it does not comply with specified requirements.

F. Additional testing and inspecting, at Contractor's expense, shall be performed to determine compliance of replaced or additional work with specified requirements.

G. Prepare test and inspection reports.

3.5 REPAIRS

A. Repair precast structural concrete units if permitted by Architect.

1. Repairs may be permitted if structural adequacy, serviceability, durability, and appearance of units have not been impaired.

B. Mix patching materials and repair units so cured patches blend with color, texture, and uniformity of adjacent exposed surfaces and show no apparent line of demarcation between original and repaired work, when viewed in typical daylight illumination from a distance of 20 feet.

C. Prepare and repair damaged galvanized coatings with galvanizing repair paint according to ASTM A 780/A 780M.

D. Wire brush, clean, and paint damaged prime-painted components with same type of shop primer.
E. Remove and replace damaged precast structural concrete units that cannot be repaired or when repairs do not comply with requirements as determined by Architect.

3.6 CLEANING

A. Clean mortar, plaster, fireproofing, weld slag, and other deleterious material from concrete surfaces and adjacent materials immediately.

B. Clean exposed surfaces of precast concrete units after erection and completion of joint treatment to remove weld marks, other markings, dirt, and stains.

1. Perform cleaning procedures, if necessary, according to precast concrete fabricator’s written recommendations. Protect other work from staining or damage due to cleaning operations.

2. Do not use cleaning materials or processes that could change the appearance of exposed concrete finishes or damage adjacent materials.

END OF SECTION 034100