Cocoa Campus Building 16 Mechanical and Electrical Upgrades to Rooms 112 & 145

Bid Set Specifications

CDE Project #: 18-073

Prepared: February 20, 2019

Cape Design Engineering Co. 775 E. Merritt Island Causeway Suite 230 Merritt Island, FL 32952 P: 321.799.2970 F: 321.799.0375

Table of Contents

SECTION TITLE

- 22 05 23.12 Ball Valves for Plumbing Piping
- 22 15 13 General-Service Compressed-Air Piping
- 23 09 23 Direct Digital Control Systems
- 26 00 10 Basic Electrical Requirements
- 26 05 19 Low-Voltage Electrical Power Conductors and Cables
- 26 05 26 Grounding and Bonding for Electrical Systems
- 26 05 29 Hangers and Supports for Electrical Systems
- 26 05 33 Raceways and Boxes for Electrical Systems
- 26 05 53 Identification for Electrical Systems
- 26 22 00 Low-Voltage Transformers
- 26 24 16 Panelboards
- 26 27 26 Wiring Devices
- 26 28 16 Enclosed Switches and Circuit Breakers
- 26 43 13 Surge Protection for Low-Voltage Electrical Power Circuits

SECTION 22 05 23.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Brass ball valves.
 - 2. Bronze ball valves.
 - 3. Steel ball valves.
 - 4. Iron ball valves.
- 1.3 DEFINITIONS
 - A. CWP: Cold working pressure.
- 1.4 ACTION SUBMITTALS
 - A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61 Annex G and NSF 372.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
 - B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.5 for flanges on steel valves.
 - 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 5. ASME B16.18 for solder-joint connections.
 - 6. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 Annex G and NSF 372 for valve materials for potablewater service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 - 2. Hand Lever: For quarter-turn valves smaller than NPS 4.
- H. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.
 - 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

- A. Brass Ball Valves, One-Piece:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. KITZ Corporation.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Forged brass or bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Brass or stainless steel.
 - h. Ball: Chrome-plated brass or stainless steel.
 - i. Port: Reduced.
- B. Brass Ball Valves, Two-Piece with Full Port and Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Apollo Valves; Conbraco Industries, Inc.
 - c. Crane; Crane Energy Flow Solutions.
 - d. DynaQuip Controls.
 - e. Elkhart Products Corporation.
 - f. FNW; Ferguson Enterprises, Inc.
 - g. Hammond Valve.
 - h. Jomar Valve.
 - i. KITZ Corporation.
 - j. Legend Valve & Fitting, Inc.
 - k. Marwin Valve; Richards Industries.
 - I. Milwaukee Valve Company.
 - m. NIBCO INC.
 - n. Red White Valve Corp.
 - o. Stockham; Crane Energy Flow Solutions.
 - p. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.

- g. Stem: Brass.
- h. Ball: Chrome-plated brass.
- i. Port: Full.
- C. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. Jomar Valve.
 - d. KITZ Corporation.
 - e. Marwin Valve; Richards Industries.
 - f. Milwaukee Valve Company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Full.
- D. Brass Ball Valves, Two-Piece with Regular Port and Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. Hammond Valve.
 - d. Legend Valve & Fitting, Inc.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.

- E. Brass Ball Valves, Two-Piece with Regular Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Jamesbury; Metso.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Brass or bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Regular.
- F. Brass Ball Valves, Three-Piece with Full Port and Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Jomar Valve.
 - b. KITZ Corporation.
 - c. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- G. Brass Ball Valves, Three-Piece with Full Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Marwin Valve; Richards Industries.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece.

- d. Body Material: Forged brass.
- e. Ends: Threaded and soldered.
- f. Seats: PTFE.
- g. Stem: Stainless steel.
- h. Ball: Stainless steel, vented.
- i. Port: Full.

2.3 BRONZE BALL VALVES

- A. Bronze Ball Valves, One-Piece with Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. NIBCO INC.
 - d. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze.
 - h. Ball: Chrome-plated brass.
 - i. Port: Reduced.
- B. Bronze Ball Valves, One-Piece with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. NIBCO INC.
 - c. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: One piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Reduced.

- C. Bronze Ball Valves, Two-Piece with Full Port, and Bronze or Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. FNW; Ferguson Enterprises, Inc.
 - d. Hammond Valve.
 - e. Lance Valves.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Watts; a Watts Water Technologies company.
 - i. Zurn Industries, LLC.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- D. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. FNW; Ferguson Enterprises, Inc.
 - d. Hammond Valve.
 - e. Lance Valves.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded or soldered.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Full.

- E. Bronze Ball Valves, Two-Piece with Regular Port and Bronze or Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. DynaQuip Controls.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.
- F. Bronze Ball Valves, Two-Piece with Regular Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Hammond Valve.
 - c. NIBCO INC.
 - d. Stockham; Crane Energy Flow Solutions.
 - e. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Regular.
- G. Bronze Ball Valves, Three-Piece with Full Port and Bronze or Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Apollo Valves; Conbraco Industries, Inc.
- b. DynaQuip Controls.
- c. Hammond Valve.
- d. Milwaukee Valve Company.
- e. NIBCO INC.
- f. Red White Valve Corp.
- g. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- H. Bronze Ball Valves, Three-Piece with Full Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Full.
- I. Bronze Ball Valves, Three-Piece with Regular Port and Bronze Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Jamesbury; Metso.
 - c. NIBCO INC.

- 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece
 - d. Body Material: Bronze
 - e. Ends: Threaded or soldered.
 - f. Seats: PTFE.
 - g. Stem: Bronze.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.
- J. Bronze Ball Valves, Three-Piece with Regular Port and Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Jamesbury; Metso.
 - c. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Three piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded or soldered.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Regular.
- K. Bronze Ball Valves, Two-Piece, Safety-Exhaust:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Jamesbury; Metso.
 - c. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze, ASTM B 584, Alloy C844.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.

- h. Ball: Chrome-plated brass, with exhaust vent opening for pneumatic applications.
- i. Port: Full.

2.4 STEEL BALL VALVES

- A. Steel Ball Valves with Full Port, Class 150:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. Jamesbury; Metso.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-72.
 - b. CWP Rating: 285 psig.
 - c. Body Design: Split body.
 - d. Body Material: Carbon steel, ASTM A 216, Type WCB.
 - e. Ends: Flanged or threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Full.
- B. Steel Ball Valves with Regular Port, Class 150:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Jamesbury; Metso.
 - c. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-72.
 - b. CWP Rating: 285 psig.
 - c. Body Design: Uni-body.
 - d. Body Material: Carbon steel, ASTM A 216, Type WCB.
 - e. Ends: Flanged or threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel, vented.
 - i. Port: Regular.

2.5 IRON BALL VALVES

- A. Iron Ball Valves, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Apollo Valves; Conbraco Industries, Inc.
 - c. KITZ Corporation.
 - d. Sure Flow Equipment Inc.
 - e. Watts; a Watts Water Technologies company.
 - f. Zurn Industries, LLC.
 - 2. Description:
 - a. Standard: MSS SP-72.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Split body.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Ends: Flanged or threaded.
 - f. Seats: PTFE.
 - g. Stem: Stainless steel.
 - h. Ball: Stainless steel.
 - i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solderjoint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Brass ball valves, one piece.
 - 3. Bronze ball valves, one piece with bronze trim.
 - 4. Brass ball valves, two-piece with full port and stainless-steel trim.
 - 5. Bronze ball valves, two-piece with full port and bronze or brass trim.
 - 6. Brass ball valves, three-piece with full port and brass trim.
 - 7. Bronze ball valve, three-piece with full port and bronze or brass trim.
 - 8. Bronze ball valves, two-piece with regular port and bronze trim.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Steel and Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Steel ball valves, Class 150 with full port.
 - 3. Iron ball valves, Class 150.

END OF SECTION 22 05 23.12

SECTION 221513 - GENERAL-SERVICE COMPRESSED-AIR PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes piping and related specialties for general-service compressedair systems:
 - 1. Pipes, tubes, and fittings.
 - 2. Joining materials.
 - 3. Valves.
 - 4. Dielectric fittings.
 - 5. Flexible pipe connectors.
 - 6. Specialties.
 - 7. Quick couplings.

1.3 DEFINITIONS

- A. High-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures between 150 and 200 psig.
- B. Low-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures of 150 psig or less.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Dielectric fittings.
 - 2. Flexible pipe connectors.
 - 3. Safety valves.
 - 4. Pressure regulators. Include rated capacities and operating characteristics.
 - 5. Automatic drain valves.
 - 6. Filters. Include rated capacities and operating characteristics.
 - 7. Lubricators. Include rated capacities and operating characteristics.
 - 8. Quick couplings.

1.5 INFORMATIONAL SUBMITTALS

- A. Brazing certificates.
- B. Qualification Data: For installers.
- C. Field quality-control test reports.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For general-service compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Extruded-Tee Outlet Procedure: Qualify operators according to training provided by T-DRILL Industries Inc., for making branch outlets.
 - 2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.
- B. Brazing: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications," or to AWS B2.2, "Standard for Brazing Procedure and Performance Qualification."
- C. ASME Compliance:
 - 1. Comply with ASME B31.1, "Power Piping," for high-pressure compressed-air piping.
 - 2. Comply with ASME B31.3, "Process Piping," for high- and low-pressure compressed-air piping.
 - 3. Comply with ASME B31.9, "Building Services Piping," for low-pressure compressed-air piping.

1.8 PROJECT CONDITIONS

- A. Interruption of Existing Compressed-Air Service: Do not interrupt compressed-air service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary compressed-air service according to requirements indicated:
 - 1. Notify Owner no fewer than five days in advance of proposed interruption of compressed-air service.
 - 2. Do not proceed with interruption of compressed-air service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Copper Tube: ASTM B88, Type K or L and ASTM B88, Type M seamless, drawn-temper, water tube.
 - 1. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, wrought copper with dimensions for brazed joints.
 - 2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300.
 - 3. Copper Unions: ASME B16.22 or MSS SP-123.
 - 4. Press-Type Fittings, NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
 - 5. Extruded-Tee Outlets: Procedure for making branch outlets in copper tube according to ASTM F2014.
 - 6. Grooved-End Fittings and Couplings:
 - a. Grooved-End Fittings: ASTM B75, copper tube or ASTM B584, bronze castings.
 - b. Couplings: Copper-tube dimensions and design similar to AWWA C606. Include ferrous housing sections, gasket suitable for compressed air, and bolts and nuts. Provide EDPM gasket for oil-free compressed air. Provide NBR gasket if compressed air contains oil or oil vapor.
- B. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated.

2.3 VALVES

A. Metal Ball Valves: Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping."

2.4 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 150 psig
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Description:
 - a. Standard: ASSE 1079.
 - b. Factory-fabricated, bolted, companion-flange assembly.
 - c. Pressure Rating: 150 psig
 - d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Description:
 - a. Nonconducting materials for field assembly of companion flanges.
 - b. Pressure Rating: 150 psig
 - c. Gasket: Neoprene or phenolic.
 - d. Bolt Sleeves: Phenolic or polyethylene.
 - e. Washers: Phenolic with steel backing washers.

2.5 FLEXIBLE PIPE CONNECTORS

- A. Bronze-Hose Flexible Pipe Connectors: Corrugated-bronze tubing with bronze wirebraid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: 150 psig minimum.
 - 2. End Connections, NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections, NPS 2-1/2 and Larger: Flanged copper alloy.

2.6 SPECIALTIES

- A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.
 - 1. Pressure Settings: Higher than discharge pressure and same or lower than receiver pressure rating.
- B. Air-Main Pressure Regulators: Bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 150-psig inlet pressure, unless otherwise indicated.
 - 1. Type: Pilot operated.
- C. Air-Line Pressure Regulators: Diaphragm or pilot operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 150-psig minimum inlet pressure, unless otherwise indicated.
- D. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 150-psig minimum working pressure, capable of automatic discharge of collected condensate.
- E. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded.
- F. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration and drain cock.
- G. Air-Line Lubricators: With drip chamber and sight dome for observing oil drop entering air stream; with oil-feed adjustment screw and quick-release collar for easy bowl removal.
 - 1. Provide with automatic feed device for supplying oil to lubricator.

2.7 QUICK COUPLINGS

- A. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.
- B. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.
 - 1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.
 - 2. Plug End: Straight-through type with barbed outlet for attaching hose.

- C. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-plated-steel operating parts.
 - 1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
 - 2. Plug End: With barbed outlet for attaching hose.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Low-Pressure Compressed-Air Distribution Piping: Use the following piping materials for each size range:
 - 1. NPS 2 and Smaller: Type K or L, copper tube; wrought-copper fittings; and brazed or soldered joints.
 - 2. NPS 2-1/2 to NPS 4: Type K or L, copper tube; wrought-copper fittings; and brazed or soldered joints.
 - 3. NPS 5 to NPS 8: Type K or L, copper tube; grooved-end copper fittings; couplings; and grooved joints.
- B. Drain Piping: Use the following piping materials:
 - 1. NPS 2 and Smaller: Type M copper tube; wrought-copper fittings; and brazed or soldered joints.

3.2 VALVE APPLICATIONS

- A. Metal General-Duty Valves: Comply with requirements and use valve types specified in "Valve Applications" Articles in Section 220523.12 "Ball Valves for Plumbing Piping," according to the following:
 - 1. Low-Pressure Compressed Air: Valve types specified for low-pressure compressed air.
 - 2. High-Pressure Compressed Air: Valve types specified for medium-pressure compressed air.
 - 3. Equipment Isolation NPS 2 and Smaller: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.
 - 4. Grooved-end valves may be used with grooved-end piping and grooved joints.

3.3 PIPING INSTALLATION, GENERAL

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

- B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.
- E. Install piping adjacent to equipment and machines to allow service and maintenance.
- F. Install air and drain piping with 1 percent slope downward in direction of flow.
- G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.
- H. Equipment and Specialty Flanged Connections:
 - 1. Use steel companion flange with gasket for connection to steel pipe.
 - 2. Use cast-copper-alloy companion flange with gasket and brazed or soldered joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.
- I. Flanged joints may be used instead of specified joint for any piping or tubing system.
- J. Extended-tee outlets with brazed branch connection may be used for copper tubing, within extruded-tee connection diameter to run tube diameter ratio for tube type, according to Extruded Tee Connections Sizes and Wall Thickness for Copper Tube (Inches) Table in ASTM F2014.
- K. Install eccentric reducers where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.
- L. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.
- M. Install piping to permit valve servicing.
- N. Install piping free of sags and bends.
- O. Install fittings for changes in direction and branch connections.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints for Steel Piping: Join according to AWS D10.12/D10.12M.
- E. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Soldered Joints: Apply ASTM B813, water-flushable flux, unless otherwise indicated, to tube end. Join according to ASTM B828 or CDA's "Copper Tube Handbook."
- G. Extruded-Tee Outlets for Copper Tubing: Form branches according to ASTM F2014, with tools recommended by procedure manufacturer, and using operators qualified according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- I. Grooved Joints: Assemble couplings with housing, gasket, lubricant, and bolts. Join according to AWWA C606 for grooved joints. Do not apply lubricant to prelubricated gaskets.
- J. Heat-Fusion Joints for PE Piping: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D2657 for socket-fusion joints.
- K. Pressure-Sealed Joints: Join with tools recommended by fitting manufacturer, using operators qualified according to Part 1 "Quality Assurance" Article.

- L. Solvent-Cemented Joints for ABS Piping: Clean and dry joining surfaces. Join according to the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. Join according to ASME B31.9 for solvent-cemented joints and to ASTM D2235 Appendix.
- M. Solvent-Cemented Joints for PVC Piping: Clean and dry joining surfaces. Join according to the following:
 - 1. Comply with ASTM F402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. Apply primer and join according to ASME B31.9 for solvent-cemented joints and to ASTM D2672.
- N. Dissimilar Metal Piping Material Joints: Use dielectric fittings.

3.5 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping," Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.
- B. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.
- C. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. NPS 2 and Smaller: Use dielectric unions.
- C. NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. NPS 5and Larger: Use dielectric flange kits.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION

- A. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.
- B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.

3.8 SPECIALTY INSTALLATION

- A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.
- B. Install air-main pressure regulators in compressed-air piping at or near air compressors.
- C. Install air-line pressure regulators in branch piping to equipment and tools.
- D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.
- E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters.
- F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters.
- G. Install air-line lubricators in branch piping to machine tools.

3.9 CONNECTIONS

- A. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment and machine.
- B. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment and machine.
- 3.10 HANGER AND SUPPORT INSTALLATION
 - A. Comply with requirements in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
 - B. Vertical Piping: MSS Type 8 or 42, clamps.
 - C. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - E. Base of Vertical Piping: MSS Type 52, spring hangers.
 - F. Support horizontal piping within 12 inches of each fitting and coupling.
 - G. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

- H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
 - 8. NPS 2-1/2: 13 feet with 1/2-inch rod.
 - 9. NPS 3: 14 feet with 1/2-inch rod.
 - 10. NPS 3-1/2: 15 feet with 1/2-inch rod.
 - 11. NPS 4: 16 feet with 1/2-inch rod.
 - 12. NPS 5: 18 feet with 1/2-inch rod.
 - 13. NPS 6: 20 feet with 5/8-inch rod.
 - 14. NPS 8: 23 feet with 3/4-inch rod.
- I. Install supports for vertical copper tubing every 10 feet.
- J.
- 3.11 FIELD QUALITY CONTROL
 - A. Perform field tests and inspections.
 - B. Tests and Inspections:
 - 1. Piping Leak Tests for Metal Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
 - 2. Repair leaks and retest until no leaks exist.
 - 3. Inspect filters, lubricators and pressure regulators for proper operation.
 - C. Prepare test reports.

END OF SECTION 221513

SECTION 23 09 23 – DIRECT DIGITAL CONTROL SYSTEMS

PART 1 - GENERAL

1.1 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.
 - 1. AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)
 - a. ASME/ANSI B16.5 Pipe Flanges and Flanged Fittings: NPS 1/2 Through NPS 24 Metric/Inch Standard
 - b. ASME B31.1 Power Piping
 - 2. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM)
 - a. ASTM A 126 Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings
 - 3. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
 - a. NFPA 70 National Electrical Code
 - 4. UNDERWRITERS LABORATORIES (UL)
 - a. UL 506 Specialty Transformers
 - b. UL 916 Standard for Energy Management Equipment
 - c. UL 1449 Surge Protective Devices

1.2 DEFINITIONS

- A. Digital Controller: A control module which is microprocessor based, programmable by the user, has integral input/output within the module or on network connected modules, and performs stand-alone operations.
- B. Direct Digital Control (DDC): Digital controls, as defined in this specification, performing control logic. The controller directly senses building environment and makes control decisions based on user defined, controller resident programs. The controller outputs control signals that directly operate valves, dampers, and motor controllers. No conventional control devices, pneumatic or electronic, such as receiver-controllers, thermostats, and logic units are present within or interface with a direct digital control loop. Actuators are electric, and the controller output is converted to the appropriate type of signal.
- C. DDC System: A system made up of one or more digital controllers which communicate on a network.

- D. Distributed Control: The intent of distributed control is to install the controllers near their respective controlled equipment. The control system consists of stand-alone controllers, with the total number of input and output points limited to 48 or less per controller. Failure of any single controller will not cause the loss of more than 48 control points.
- E. FMS: Facility Management System.
 - 1. Dynamic Control: A process that optimizes energy efficiency of HVAC systems (air handling units, converters, chillers, and boilers) by increasing and decreasing setpoints or starting and stopping equipment in response to heating and cooling needs of the facility. A requirement of dynamic control is knowing the heating/cooling demand status of the process. Therefore, dynamic control requires controllers connected in a communications network.
 - 2. Firmware: Firmware is software programmed into read only memory (ROM) and erasable programmable read only memory (EPROM) chips. Software may not be changed without physically altering the chip.
 - 3. Hand-Held Terminal: A hand-held terminal is a manufacturer specific device connected directly to a communications port on a controller, through which the controller is accessed and, in some cases, programmed.
 - 4. Input/Output (I/O) Points: I/O points refer to analog inputs (AI), digital inputs (DI), analog outputs (AO), and digital outputs (DO) in a digital controller. Another term for digital inputs and outputs is binary inputs and outputs. Inputs are from analog sensors (temperature, pressure, humidity, flow) and digital sensors (motor status, flow switches, switch position, and pulse output devices). Outputs operate modulating and on/off control devices.
 - 5. I/O Expansion Unit: An I/O expansion unit provides additional point capacity to a digital LAN. An I/O unit is not stand-alone because the control program does not reside in the I/O unit. An I/O expander which connects directly to a stand-alone controller through a multi-line microprocessor bus is restricted to reside within 3 feet of the stand alone controller and is considered part of the stand alone controller.
 - 6. Local Area Network (LAN)
 - a. A communications bus that interconnects digital controllers for peer-topeer (see "peer-to-peer" below) communications. Different levels of LANs are possible within a single DDC system. In this case, a digital controller on a higher level LAN acts as a network controller to the controllers on the lower level LAN. The network controller, then, has at least two LAN communications ports. One port supports peer-to-peer communications with other digital controllers on the higher level LAN. The other port supports communications with the digital controllers on the lower level LAN.
 - b. LANs permit sharing global information. This allows building and site wide control strategies such as peak demand limiting, dynamic control strategies, coordinated response to alarm conditions, and remote monitoring and programming of digital controllers.
 - 7. Microprocessor: A microprocessor refers to the central processing unit (CPU) that contains all registers and logic circuitry that allow digital controllers to function.

- 8. Output Signal Conversion: Output signal conversion refers to changing one kind of control output into a proportionally related signal appropriate for direct actuation of the controlled device. An example is converting a 4 to 20 mA or 0 to 10 VDC signal to a proportional 3 to 15 psig signal to operate a pneumatic actuator.
- 9. Optimum Start: Optimum start is a method of starting HVAC equipment prior to scheduled occupancy in order to have the building at setpoint when occupied. Optimum start is based on the zone temperatures, zone setpoints, and outdoor temperature.
- 10. Peer-to-Peer: Peer-to-peer refers to controllers connected on a communications LAN that act independently, as equals, and communicate with each other to pass information.
- 11. PID: PID refers to proportional, integral, and derivative control; the three types of action that are used in controlling modulating equipment.
- 12. Resolution: Refers to the number of possible states an input value or output value can take and is a function of the digital controller I/O circuitry; the A/D converter for input and the D/A converter for output. Ten bit resolution has 1024 possible states.
- 13. Stand-Alone Control: Refers to the digital controller performing required climate control, and energy management functions without connection to another digital controller or computer. Requirements for stand-alone control are a time clock, a microprocessor, resident control programs, PID control, and I/O. All stand-alone controllers have a communication port and firmware for direct connection and interrogation with a laptop computer or similar hand-held device. This interrogation includes parameter changes and program downloads.
- 14. Terminal Control Unit (TCU): An off-the-shelf, stand-alone digital controller equipped for communication on a lower level LAN. TCUs may deviate from stand-alone only in receiving energy management and time information from a stand-alone digital controller. A TCU is commonly application specific and is used for distributed control of specific HVAC subsystems. A TCU communicates with other digital controllers. Typically, a TCU communicates on a lower level LAN. Examples where TCUs are used include small air handling units (AHUS), variable air volume (VAV) boxes, fan coil units, and heat pumps.

1.3 DDC SYSTEM DESCRIPTION

- A. Manufacturer: Automated Logic Controls (ALC)
- B. Design Requirements:
 - 1. Control System Schematic: Provide control system schematic that includes the following:
 - a. Location of each input and output device
 - b. Flow diagram of each HVAC component, for instance flow through coils, fans, dampers
 - c. Name or symbol for each component such as V-1, DM-2, and T-1 for a valve, damper motor, and temperature sensor, respectively
 - d. Setpoints

- e. Sensor range
- f. Actuator range
- g. Valve and damper schedules and normal position
- h. Switch points on input switches
- i. Written sequence of operation for each schematic
- j. Schedule identifying each sensor and controlled device with the following information:
 - 1) LAN and Software point name with send and receive address if applicable.
 - 2) Point type (AO, AI, DO, DI).
 - 3) Point range.
 - 4) Digital controller number for each point.
- 2. Electrical Equipment Ladder Diagrams: Submit diagrams showing electrical equipment interlocks, including voltages and currents.
- 3. Component Wiring Diagrams: Submit a wiring diagram for each type of input device and each type of output device. Diagram shall show how the device is wired and powered; showing typical connections at the digital controller and each power supply, as well as at the device itself. Show for all field connected devices, including, but not limited to, control relays, motor starters, electric or electronic actuators, and temperature, pressure, flow, proof, and humidity sensors and transmitters.
- 4. Terminal Strip Diagrams: Submit a diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
- 5. Communication Architecture Schematic: Submit a schematic showing communication networks used for all DDC system controllers, workstations, and field interface devices.

1.4 SUBMITTALS

- A. Submit manufacturers' specification sheets for each type of equipment to show compliance with the project specification. For each type of equipment highlight each compliance item and reference each item to the relevant specification paragraph number. Submit sufficient manufacturers' information to allow verification of compliance by the reviewing authority. Equipment and software for which specification compliance data shall be submitted includes but is not limited to the following:
 - 1. Shop Drawings:
 - a. Control system schematic
 - b. Ladder diagrams
 - c. Component wiring diagrams
 - d. Terminal strip diagrams
 - e. Communication architecture schematic
 - 2. Product Data:
 - a. DDC hardware

- b. DDC capabilities
- c. Input devices
- d. Output devices
- e. Surge and transient protection
- 3. Test Reports:
 - a. Field tests
 - b. Performance verification tests
 - c. Trend logs for all control points for a minimum period of five (5) days, including weekends.
- 4. Operation and Maintenance Data:
 - a. Controls and HVAC System Operators Manual
 - b. DDC Manufacturer's Hardware and Software Manuals
- 5. Closeout Submittals:
 - a. Posted operating instructions:
 - b. Provide administrative and closeout submittals:
 - c. Training course documentation
 - d. Service organizations
 - e. Contractor certification

1.5 OPERATING ENVIRONMENT

A. Protect components from humidity and temperature variations, dust, and other contaminants, outside limits published by the manufacturer.

1.6 QUALITY ASSURANCE

- A. Standard Products: Material and equipment shall be standard products of manufacturer regularly engaged in the manufacturing of such product, using similar materials, design and workmanship.
 - 1. DDC Hardware
 - a. I/O type and characteristics
 - b. Resident programs
 - c. Communications ports
 - d. Protected memory
 - e. Operating temperature limits
 - 2. DDC Capabilities
 - a. Communications; baud rates, communication ports, hierarchy.
 - b. Trending capabilities.
 - c. Alarming capabilities; capable of alarm generation as defined in this specification.

- d. Messaging capabilities.
- e. Self diagnostic capabilities.
- f. PID control capabilities.
- 3. Input Devices
 - a. Transmitters
 - b. Temperature sensors
 - c. Flow or motor proof
 - d. Sensor wells
- 4. Output Devices
 - a. Valves
 - b. Actuators
 - c. Control relays
 - d. Electronic to pneumatic transducer
- 5. Surge and Transient Protection
 - a. Power line
 - b. Communications lines
 - c. Controller I/O
- B. Nameplates and Tags
 - 1. Nameplates and tags bearing device unique identifiers shall be engraved or stamped. Permanently attach nameplates to HVAC control panel doors and back plates.
 - 2. For each field mounted piece of equipment attach a plastic or metal tag with equipment name and point identifier.
- C. Verification of Dimensions: The contractor shall verify all dimensions in the field and shall advise the Project Manager of any discrepancy before performing work.
- D. Drawings: Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the mechanical, electrical, and finish conditions that could affect the work, and shall furnish all work necessary to meet such conditions.
 - 1. List of Drawings: Provide a list of drawings.
 - 2. List of Symbols and Abbreviations Used on Drawings:
 - a. Provide an index of symbols and abbreviations used on the drawings.
 - 3. List of I/O Points: For each input and output physically connected to a digital controller provide, on a controller by controller basis, provide the following:
 - a. Point description: for example: mixed air temperature, supply fan start/stop, etc.
 - b. Point type: AO, AI, DO, or DI.
 - c. Point range.

- d. Sensor range associated with point range.
- e. Software name(s) associated with point, if any.
- f. Point connection terminal number.
- 4. Equipment Components List: Submit a listing of controllers and connected devices shown on control system schematic. List the following:
 - a. Control system schematic name
 - b. Description
 - c. Manufacturer of controller
 - d. Controller's name
 - e. Equipment part numbers
 - f. Cv for valves
 - g. For actuators:
 - 1) Motive force (such as pneumatic, or electric)
 - 2) Normal position
 - 3) Nominal operating range (such as 3 to 7 psi, 4 to 8 mA)
- 5. AC Power Table: Submit a table listing each controller and the circuit breaker number, panel box number, and physical location of each controller's source of AC power.
- E. Training Course Documentation: Training course documentation shall include a manual for each trainee plus two additional copies and two copies of audiovisual training aids, if used. Documentation shall include an agenda, defined objectives for each lesson and detailed description of the subject matter of each lesson.
- F. Service Organizations: Qualified service organization list that shall include the names and telephone numbers of organizations qualified to service the HVAC control systems.
- G. Contractor Certification: Provide certification that the installation of the control system is complete and meets the technical requirements of this section.
- H. Controls and HVAC System Operators Manual: Provide four (4) copies of a Control and HVAC Systems Operators Manual. Provide in a 3-ring binder with a minimum of the following 6 sections. Use tabs to divide each section.
 - 1. Description of HVAC Systems: Provide a description of the HVAC system components and control system. Include sequence of operation and a complete points list.
 - 2. Controls Drawings: Provide drawings as specified in submittal paragraph.
 - 3. Control Program Listings: Provide listing of all control programs, including terminal equipment controller setup pages if used.
 - 4. Current Operating Parameters: Provide printouts of input and output setup information, (database setups). This section provides information such as point addresses, slopes and offsets for all points, database of points, etc.
 - 5. Control Equipment Technical Data Sheets: Provide technical data sheets for all controller hardware and accessories.
 - 6. Backup of Control Program: Provide backup copies of the control program and ACAD control drawings on CD-ROM.

- I. DDC Manufacturer's Hardware and Software Manuals: Provide the following manuals.
 - 1. Installation and Technical Manuals for all digital controller hardware.
 - 2. Operator Manuals for all digital controllers.
 - 3. Programming Manuals for all digital controllers.
- J. Modification of References: The advisory provision in ASME B31.1 and NFPA 70 are mandatory. Substitute the word "shall" for "should" wherever it appears and interpret all references to the "authority having jurisdiction" and "owner" to mean the Contractor.

1.7 WORK BY OTHERS

A. The demarcation of work and responsibilities between the Facilities Management System Contractor (also known as controls contractor) and other related trades shall be as outlined in the FMS RESPONSIBILITY MATRIX herein. The numbers refer to Division 23 or 26 of contract specifications.

FMS Responsibility Matrix				
WORK	FURNISH		LowVolt WIRING/TU BE	LINE POWER
FMS low voltage and communication wiring	FMS	FMS	FMS	N/A
FMS conduits and raceway	FMS	FMS	FMS	FMS
Automatic dampers	FMS	23	N/A	N/A
Manual valves	23	23	N/A	N/A
Automatic valves	FMS	23	FMS	N/A
Pipe insertion devices and taps including thermowells, flow and pressure stations.	FMS	23	FMS	FMS
FMS Current Switches	FMS	FMS	FMS	N/A
FMS Control Relays	FMS	FMS	FMS	N/A
Power distribution system monitoring interfaces	26	26	FMS	26
All FMS Nodes, equipment, housings, enclosures and panels.	FMS	FMS	FMS	FMS
Smoke Detectors	26	26	26	26
Fire/Smoke Dampers	23	23	FMS	26
Fire Dampers	23	23	N/A	N/A
VFDs	23	26	FMS	26
Fire Alarm shutdown relay interlock wiring	26	26	26	26
Fire Alarm smoke control relay interlock wiring	26	26	FMS	26
Control damper actuators	FMS	FMS	FMS	26

PART 2 - PRODUCTS

2.1 DDC SYSTEM

- A. Provide a DDC system as a distributed control system. The system shall have stand-alone digital controllers. Utilize existing system capabilities and controllers as much as possible. All new controllers shall have minimum 20% spare capacity for all types of control points.
- B. Provide an operator programmable system to perform closed-loop, modulating control of building equipment.
- C. Provide the quantity of digital controllers indicated on the drawings to perform required climate control, energy management, and alarm functions. The quantity of controllers shall be no less than the number shown on drawings. A separate DDC controller shall control each major piece of equipment. All material used shall be currently in production.
 - 1. Direct Digital Controllers: DDC hardware shall be UL 916 rated.

- a. Distributed Control: Apply digital controllers in a distributed control manner.
- b. I/O Point Limitation: Total number of I/O hardware points, including those communicated over a LAN, used by a single stand-alone digital controller, including I/O expansion units shall not exceed 48.
- c. Environmental Operating Limits: Provide digital controllers that operate in environmental conditions between 32 and 120 degrees F.
- d. Stand-Alone Control: Provide stand-alone digital controllers.
- e. Internal Clock: Provide a clock with each stand-alone controller. Each controller shall have its clock backed up by a battery or capacitor with sufficient capacity to maintain clock operation for a minimum of 72 hours during power outage.
- f. Memory:
 - 1) Provide sufficient memory for each controller to support required control, communication, trends, alarms, and messages
 - 2) Memory Protection: Programs residing in memory shall be protected either by using EEPROM, flash memory, or by an uninterruptible power source (battery or uninterruptible power supply (UPS)). The backup power source shall have sufficient capacity to maintain volatile memory during an AC power failure. Where the uninterruptible power source is rechargeable (a rechargeable battery), provide sufficient back-up capacity for a minimum of seventy-two hours. The rechargeable power source shall be constantly charged while the controller is operating under normal line power. Where a non-rechargeable power source is used, provide sufficient capacity for a minimum of two years accumulated power failure. Batteries shall be replaceable without soldering.
- g. Inputs: Provide input function integral to the direct digital controller. Provide input type(s) as required by the DDC design. For each type of input used on high-level controllers, provide at least one similar spare input point per controller.
 - 1) Analog Inputs: Allowable input types are 100 ohm (or higher) platinum RTDs, thermistors, 4 to 20 mA, and 0-10 VDC. Thermistor and direct RTD inputs must have appropriate conversion curves stored in controller software or firmware. Analog to digital (A/D) conversion shall have 10-bit minimum resolution.
 - 2) Digital Inputs: Digital inputs shall sense open/close, on/off, or other two state indications.
- h. Outputs: Provide output function integral to the direct digital controller. Provide output type(s) as required by the DDC design. For each type of output used on high-level controllers, provide at least one similar spare output point per controller.
 - 1) Analog Outputs: Provide controllers with a minimum output resolution of 10 bits. Output shall be 4 to 20 mA, 0 to 10 VDC, or

0 to 20 psig. Each pneumatic output shall have feedback for monitoring of the actual pneumatic signal.

- 2) Digital Outputs: Provide contact closure with contacts rated at a minimum of 1 ampere at 24 volts.
- i. PID Control: Provide controllers with proportional integral, and derivative control capability. Terminal controllers are not required to have the derivative component.
- j. Digital Controller Networking Capabilities: The upper level digital controllers shall be capable of networking with other similar upper level controllers. Upper level controllers shall also be capable of communicating over a network between buildings.
- k. Communications Ports:
 - 1) Controller-to-Controller LAN Communications Ports: Controllers in the building DDC system shall be connected in a communications network. Controllers shall have controller-to-controller communication ports to both peer controller (upper level controllers) and terminal controllers (lower level controllers). Network may consist of more than one level of local area network and one level may have multiple drops. Communications network shall permit sharing information between controllers, allowing execution of dynamic control strategies, and coordinated response to alarm conditions. Minimum baud rate for the lowest level LAN shall be 9600 Baud. Minimum baud rate for the highest-level LAN shall be 9600 Baud. Minimum baud rate for a DDC system consisting of a single LAN shall be 9600 Baud.
 - On-Site Interface Ports: Provide a RS-232, RS-485, or RJ-11 2) communications port for each digital controller that allows direct connection of a computer or hand held terminal and through which the controller may be fully accessed. Controller access shall not be limited to access through another controller. On-site interface communication ports shall be in addition to the communications supporting controller-to-controller communications. port(s) Communication rate shall be 9600-Baud minimum. Everv controller on the highest level LAN shall have a communications port supporting direct connection of a computer; a hand held terminal port is not sufficient. By connecting a computer to this port, every controller in the direct digital control system shall be able to be fully accessed and programmed. The following operations shall be available; downloading and uploading control programs, modifying programs and program data base, and retrieving or accepting trend reports, status reports, messages, and alarms.
 - 3) Remote Work Station Interface Port: Provide one additional direct connect computer port in each DDC system for permanent connection of a remote operator's workstation, unless the workstation is a node on the LAN. All operations possible by directly connecting a computer to a controller at the highest level LAN shall be available through this port.
 - 4) Telecommunications Interface Port: Provide one additional telecommunications port in each DDC system permitting remote

communications via telephone. All operations possible by directly connecting a computer to a controller at the highest level LAN shall be available through the telecommunications port. A telecommunications port provided on a digital controller shall be in addition to the port required for directly connecting a computer to the controller. Telecommunication baud rate shall be 28000 minimum.

- I. Digital Controller Cabinet: Each indoor digital controller cabinet shall protect the controller from dust and shall be rated NEMA 1, unless specified otherwise. Each outdoor digital controller cabinet shall protect the controller from all outside conditions and shall be rated NEMA 4. Cabinets for high-level controllers shall be hinged door, lockable, and have offset removable metal back plate.
- m. Main Power Switch: Each controller on the highest level LAN or each control cabinet shall have a main external power switch for isolation of the controller from AC power. The switch shall be located in the DDC cabinet.
- 2. Terminal Control Units:
 - a. The same company as the digital controllers shall manufacture TCUs.
 - b. TCUs shall automatically start-up on return of power after a failure, and previous operating parameters shall exist or shall be automatically downloaded from a digital controller on a higher level LAN.
 - c. TCUs do not require an internal clock, if they get time information from a higher level digital controller.
- 3. DDC Software
 - a. Sequence of Control: Provide, in the digital controllers, software to execute the sequence of control. Provide one registered copy of all software used to program control sequences in direct digital controllers. Provide any access keys that restrict programming language software functions or the ability to compile or prepare programming for download to controllers. Provide final copy of each program used in the system in both compiled and editable formats. Where specially programmed factory configured smart controllers are used in the system, provide the minimum factory programming tools and specialized controller programs ready for download to replacement controllers. At minimum, controllers must be capable of performing programming functions outlined in the following "Parameter Modification" section.
 - b. Parameter Modification: Provide software to modify control parameters. Parameter modification shall be accomplished for all controllers (high level and low level application specific) through the keypad terminal directly at each controller. Modifications shall be accomplished without having to make changes directly in line-by-line programming. When the control program is of the line-by-line type, database parameters in the following list that take real number values shall require assignment of variable names so parameters can be changed without modifying programming. Alternatively, block programming languages shall provide for modification of these database parameters in fill-in-the-

blank screens. Parameters of like type, including those in different high level and low-level controllers, may be grouped together for a single, global change. For example, an operator may group all second floor space temperature setpoints into a group and raise the setpoint by two degrees with a single command. The following parameters shall be modifiable in this way:

- 1) Setpoints
- 2) Dead band limits and spans
- 3) Reset schedules
- 4) Switchover points
- 5) PID gains and time between control output changes
- 6) Time
- 7) Timed local override time
- 8) Occupancy schedules
- 9) Holidays
- 10) Alarm points, alarm limits, and alarm messages
- 11) Point definition database
- 12) Point enable, disable, and override
- 13) Trend points, trend intervals, trend reports
- 14) Analog input default values
- 15) Passwords
- 16) Communications parameters including network and telephone communications setups.
- c. Differential: Where setpoint is in response to some analog input such as temperature, pressure, or humidity, include a setpoint differential for the control loop to prevent short cycling of control devices.
- d. Motor and Flow Status Delay: Provide an adjustable delay between when a motor is commanded on or off and when the control program looks to the motor or flow status input for confirmation of successful command execution.
- e. Runtime Accumulation: Provide resettable run time accumulation for each controlled digital output.
- f. Timed Local Override: Provide user definable adjustable run time for each push of a momentary contact timed local override. Pushes shall be cumulative with each push designating the same length of time. Provide a user definable limit on the number of contact closures summed, such as 6, before the contact closures are ignored. Timed local overrides are disabled during occupancy periods.
- g. Time Programs: Provide programs to automatically adjust for leap years and make daylight savings time and standard time adjustments.
- h. Scheduling:
 - 1) Individual controlled equipment shall be schedulable with schedule based on time of day, day of week, and day of year. Equipment may be associated into groups. Each group may be associated with a different schedule. Changing the schedule of a group shall change the schedule of all equipment in the group. Groups may be modified, created and deleted by the operator.
 - 2) Provide capability that will allow current schedules to be viewed and modified in a seven-day week format. When control program

does not automatically compute holidays, provide capability to enter holiday schedules one full year at a time.

- i. Point Override: I/O and virtual points shall accept software overrides to any possible value.
- j. Alarming: I/O points and software points shall be alarmable. Alarms may be enabled and disabled for every point. Alarm limits shall be adjustable on analog points. Controllers connected to an external communications device such as a printer, terminal, or computer, shall download alarm and alarm message when alarm occurs. Otherwise, alarms will be stored and automatically downloaded when a communications link occurs. Alarms shall be sent to operator pager via telephone connection. The following conditions shall generate alarms:
 - 1) Motor is commanded on or off, but the motor status input indicates no change
 - 2) Temperature, flow, CO2 Levels, humidity, or pressure strays outside selectable limits
 - 3) An analog input takes a value indicating sensor failure
 - 4) A module is not communicating on the LAN
 - 5) A power outage occurs.
- k. Messages: Messages shall be operator defined and assigned to alarm or status conditions. Messages shall be displayed on the workstation or printer when these conditions occur.
- I. Trending:
 - 1) DDC system shall have the capability to trend all I/O and virtual points. Points may be associated into groups. A trend report may be set up for each group. The period between logging consecutive trend values shall range from one minute to 60 minutes at a minimum. The minimum number of consecutive trend values stored at one time shall be 30 per variable. When trend memory is full, the most recent data shall overwrite the oldest data. Trend data shall be capable of being uploaded to computer. Trend data shall be available on a real time basis; trend data shall appear numerically and graphically on a connected computer's screen as the data is processed from the DDC system. Trend reports shall be capable of uploading to computer for storage.
 - 2) Controls contractor shall submit trend reports for minimum of 2 weeks period for each of the control points and prove that all the sequences of operations described on the control drawings are verified. Controls contractor shall correct all the sequence of operation deficiencies identified in the system operation through the initial trend report, tweak the response time period of various controllers, calibrate/replace sensors if required and submit a final trend report for one-week period. The controls contractors' substantial completion will be approved only after the submission and verification of final trend report.
- m. Diagnostics: Each controller shall perform self-diagnostic routines and provide messages to an operator when errors are detected. The DDC

system shall be capable of recognizing a non-responsive module on a LAN. The remaining, responsive modules on a LAN shall not operate in a degraded mode.

- n. Power Loss: During a power outage, each controller shall assume a disabled status and outputs shall go to a user definable state. Upon restoration of power, DDC system shall perform an orderly restart, with sequencing of outputs.
- o. Program Transfer: Provide software for download of control programs and database from a computer to controllers and upload of same to computer from controllers. Every digital controller in the DDC system shall be capable of being downloaded and uploaded to through a single controller on the highest level LAN.
- p. Password Protection: Provide at least three levels of password protection to the DDC system permitting different levels of access to the system. The lowest level allows monitoring only. The highest level allows full control of all functions, including setting new passwords.
- 4. Maintenance Personnel Interface Tools: Provide software for field communication with the digital controllers. In addition to changing setpoints, and making operational changes, field personnel shall be able to download programs with a notebook computer.

2.2 SENSORS AND INPUT HARDWARE

- A. Differential Pressure Instruments: The instrument shall be a pressure with an integral sensing element. The instrument over pressure rating shall be 300 percent of the operating pressure. The sensor/transmitter assembly accuracy shall be plus or minus 2 percent of full scale. The transmitter shall be a 2-wire, loop-powered device. Each transmitter shall have offset and span adjustments.
 - 1. Differential Pressure Transducer
 - a. Rating: NEMA 1
 - b. Mounting: Duct Insertion, Pipe Insertion
 - c. Range: 0-25 in. water column unidirectional, 0- +/- 5 in. water column bi-directional
 - d. Accuracy: +/- 1% full scale
 - e. Protection: 10 PSIG
 - f. Output: 4-20 mA, 0-5 VDC, 0-10 VDC
 - 2. Current Switch
 - a. Materials: Encased copper
 - b. Rating: 600vAC
 - c. Mounting: Split Core
 - d. Range: 1.5amps to 50 amps
 - e. Action: Trip point adjustment
 - f. Output: SPST, N.O.
 - g. Special: Status LED
 - 3. Current Transducer

- a. Mounting: Field Mounted
- b. Range: 60 Hz nominal
- c. Accuracy: +/- 1% full scale
- d. Protection: 250 A max current
- e. Output: 4-20mA
- 4. Override Request Switch
 - a. Materials: Bakelite
 - b. Rating: 10 amps @ 120vAC
 - c. Mounting: Wall
 - d. Output: SPDT Momentary Contact
 - e. Special: Provide with cover plate
- B. Field Installed Temperature Sensors
 - 1. Thermistors: Precision thermistors may be used in temperature sensing applications below 200 degrees F. Sensor accuracy over the application range shall be 0.36 degree F or less between the range of 32 to 150 degrees F. Stability error of the thermistor over five years shall not exceed 0.25 degree F cumulative. Sensor element and leads shall be encapsulated. Bead thermistors are not allowed. A/D conversion resolution error shall be kept to 0.1 degree F. Total error for a thermistor circuit shall not exceed 0.5 degree F, which includes sensor error and digital controller A/D conversion resolution error. Provide 18 gage twisted and shielded cable for thermistors.
 - 2. Resistance Temperature Detectors (RTDs): Provide RTD sensors with 1000 ohm, or higher, platinum elements that are compatible with the digital controllers. Sensors shall be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper. Temperature sensor accuracy shall be 0.1 percent (1 ohm) of expected ohms (1000 ohms) at 32 degrees F. Temperature sensor stability error over five years shall not exceed 0.25 degree F cumulative. Direct connection of RTDs to digital controllers, without transmitters, is preferred provided controller supports direct connection of RTDs. When RTDs are connected directly to the controller, keep lead resistance error to 0.25 degree F or less. Total error for a RTD circuit shall not exceed 0.5 degree F, which includes sensor error, lead resistance error or 4 to 20 mA or 0 to 10 VDC transmitter error, and A/D conversion resolution error.
 - 3. Temperature Sensor / Thermostats Details:
 - a. Temperature sensors for duct and pipe installation shall be RTD type. The RTDs shall be provided in either probe mounting, averaging element, or for mounting in a separable well for liquid sensing applications. RTD's shall have the following ranges and accuracies.

 - 2) Duct Single Point......20°F to 120°F/±0.7°F
 - 3) Duct Averaging......20°F to 120°F/±0.7°F
 - 4) Liquid Immersion (Chilled Water)20°F to 70°F/±0.6°F
 - a) Provide averaging style for all mixed air applications.

- b. Immersion Type: RTDS with minimum three inches total immersion for use with sensor wells, unless otherwise indicated.
- c. Sensor Wells: Stainless steel material. Provide heat-sensitive transfer agent between exterior sensor surface and interior well surface.
- C. Transmitters: Transmitters shall have 4 to 20 mA or 0 to 10 VDC output linearly scaled to the temperature, pressure, humidity, or flow range sensed. Transmitter shall be matched to the sensor, factory calibrated, and sealed. Total error shall not exceed 0.1 percent at any point across the measured span. Supply voltage shall be 24 volts ac or dc. Transmitters shall have non-interactive offset and span adjustments. For temperature sensing, transmitter stability shall not exceed 0.1 degrees F.
 - 1. Spans and Ranges: Transmitter spans or ranges shall meet the following:
 - a. Temperature: 50 degrees F span: Room, chilled water, cooling coil discharge air, return air sensors.
- D. Pressure Transmitters: Provide integral pressure transducer and transmitter. Output of pressure instrument shall be a 4 to 20 mA signal proportional to the pressure span. Span shall be as specified. Accuracy shall be 1.0 percent. Linearity shall be 0.1 percent.
- E. Current Transducers: Provide current transducers to monitor amperage of motors. Select current transducer for normal measured amperage to be near 50 percent of full-scale range. Current transducers shall have an accuracy of one percent and 4 to 20 mA or 0 to 10 VDC output signal.
- F. Input Switches
 - 1. Timed Local Override: Provide momentary contact push button override with override time set in controller software. Provide to override DDC time of day program and activate occupancy program for assigned units. Upon expiration of override time, the control system shall return to time-of-day program. Time interval for the length of operation shall be software adjustable and shall expire unless reset.

2.3 OUTPUT HARDWARE

- A. Output Switches
 - 1. Control Relays: Shall be double pole, double throw (DPDT), UL listed, with contacts rated to the application, indicator light, and dust proof enclosure. Light indicator is lit when coil is energized and is off when coil is not energized. Relays shall be socket type, plug into a fixed base, and replaceable without need of tools or removing wiring. Encapsulated "PAM" type relays are permissible for terminal control applications.
 - a. Materials: Gold Flash
 - b. Rating: 10 amps @ 120-277vAC
 - c. Mounting: Standard Electrical Box

d. Protection: NEMA 1 Housing

2.4 ELECTRICAL POWER AND DISTRIBUTION

- A. For control power provide a new, dedicated source 120 volts or less, 60 Hz, three wire (black, white, and green). Run green ground wire to panel ground; conduit grounds are not sufficient.
 - 1. Transformers: Transformers shall conform to UL 506. Power digital controllers and terminal control units (TCU's) from dedicated circuit breakers with surge protection specified. Transformers for digital controllers serving terminal equipment on lower level LANs may be grouped to have specified surge protection sized for the number of controllers on a single transformer. Provide a fuse on the secondary side of the transformer.
 - 2. Surge Protection: Surge and transient protection consist of devices installed externally to digital controllers.
 - a. Power Line Surge Protection: Surge suppressors external to digital controller, shall be installed on all incoming AC power. Surge suppressor shall be rated by UL 1449, have a fault indicating light, and have clamping voltage ratings below the following levels:
 - 1) Unit is a transient voltage surge suppressor 120 VAC/1 phase/2 wire plus ground, hard wire individual equipment protector.
 - 2) Unit must react within 5 nanoseconds and automatically reset.
 - 3) Voltage protection threshold, line to neutral, starts at no more than 211 volts peak on the 120 VAC line.
 - 4) The transient voltage surge suppressor must have an independent secondary stage equal to or greater than the primary stage joule rating.
 - 5) The primary suppression system components must be pure Silicon Avalanche Diodes.
 - 6) Silicon Avalanche Diodes or Metal Oxide Varistors are acceptable in the independent secondary suppression system.
 - 7) The Transient Suppression System shall incorporate an indication light which denotes whether the primary and/or secondary transient protection components is/are functioning.
 - 8) All system functions of the Transient Suppression System must be individually fused and not short circuit the AC power line at any time.
 - 9) The Transient Suppression System shall incorporate an EMI/RFI noise filter with a minimum attenuation of 13 dB at 10 kHz to 300 MHz.
 - 10) The system must comply with IEEE C62.41, Class "B" requirements and be tested according to IEEE C62.45.
 - 11) The system shall operate at -20 degrees C to +50 degrees C.
 - b. Telephone and Communication Line Surge Protection: Provide transient surge protection to protect the DDC controllers and LAN related devices from surges that occur on the phone lines (modem or direct connect) and on inter-unit LAN communications. Devices shall be UL listed.

- 1) The surge protection shall be a rugged package with continuous, non-interrupting protection and not use crowbar technology. Instant automatic reset after safely eliminating transient surges, induced lightning, and other forms of transient over voltages.
- 2) Unit must react within 5 nanoseconds using only solid-state silicone avalanche technology.
- 3) Unit shall be installed at the proper distance as recommended by the manufacturer.
- c. Controller Input/Output Protection: Controller input/output points shall surge protection with optical isolation, metal oxide varistors (MOV), or silicon avalanche devices. Fuses are not permitted for surge protection.
- 3. Wiring: Provide complete electric wiring for DDC System, including wiring to transformer primaries. Control circuit wiring shall not run in the same conduit as power wiring over 100 volts. Circuits operating at 100 Volts or less shall be defined as low voltage and shall be run in rigid or flexible conduit, metallic tubing, metal raceways or wire trays, armored cable, or multi-conductor cable. Provide circuit and wiring protection as required by NFPA 70. Aluminum-sheathed cable or aluminum conduit may be used but shall not be buried in concrete. Use conduit or plenum-rated cable in HVAC plenums. HVAC plenums include the space between a drop ceiling and the architectural ceiling, within walls, and within ductwork. Protect exposed wiring from abuse and damage.
 - a. AC Control Wiring:
 - 1) Control wiring for 24 V circuits shall be insulated copper 18 AWG minimum and rated for 300 VAC service.
 - 2) Wiring for 120 V shall be 14 AWG minimum and rated for 600 V service.
 - b. Analog Signal Wiring: Analog signal wiring shall be 18 AWG single or multiple twisted pair. Each cable shall be 100 percent shielded and have 20 AWG drain wire. Each wire shall have insulation rated to 300 V ac. Cables shall have an overall aluminum-polyester or tinned-copper (cable-shield tape). Install analog signal wiring in conduit separate from AC power circuits.

PART 3 - EXECUTION

- 3.1 INSTALLATION
 - A. Perform installation under supervision of competent technicians regularly employed in the installation of DDC systems.
 - B. Wiring Criteria
 - 1. Input/output identification: Permanently label each field wire, cable, or pneumatic tube at each end with unique descriptive identification.

- 2. Rigid or flexible conduit shall be terminated at all sensors and output devices.
- 3. Surge Protection: Install surge protection per manufacturer's specification.
- 4. Grounding: Ground controllers and cabinets to a good earth ground. Grounding of the green ac ground wire, at the breaker panel, alone is not adequate. Run metal conduit from controller panels to adequate building grounds. Ground sensor drain wire shields at controller end.
- 5. Contractor is responsible for correcting all associated ground loop problems.
- 6. Wiring in panel enclosures shall be run in covered wire track.
- C. Digital Controllers
 - 1. Do not divide control of a single mechanical system such as an air handling unit, boiler, chiller, or terminal equipment between two or more controllers. A single controller shall manage control functions for a single mechanical system. It is permissible, however, to manage more than one mechanical system with a single controller.
 - 2. Provide digital control cabinets that protect digital controller electronics from dust, at locations shown on the drawings.
- D. Temperature Sensors: Provide temperature sensors in locations to sense the appropriate condition. Provide sensor where they are easy to access and service without special tools. Calibrate sensors to accuracy specified. In no case will sensors designed for one application be installed for another application.
 - 1. Room Temperature Sensors: Provide on interior walls to sense average room temperature conditions. Avoid locations near heat sources or which may be covered by office furniture. Room temperature sensors should not be mounted on exterior walls when other locations are available. Mount center of sensor at 5 feet above finished floor.
 - 2. Immersion Temperature Sensors: Provide thermowells for sensors measuring temperatures in liquid applications. Locate wells to sense continuous flow conditions. Do not install wells using extension couplings. Where piping diameters are smaller than the length of the wells, provide wells in piping at elbows to sense flow across entire area of well. Wells shall not restrict flow area to less than 70 percent of pipe area. Increase piping size as required to avoid restriction. Provide thermowells with thermal transmission material within the well.
- E. Thermometers: Provide thermometers at locations indicated. Mount thermometers to allow reading when standing on the floor.
 - 1. Pressure Sensors
 - 2. Differential Pressure: As shown on control drawings.
- F. Control Drawings
 - 1. Post laminated copies of as-built control system drawings in each mechanical room.
 - 2. Provide six (6) sets of as-built control drawings to the Project Manager.

3.2 FIELD QUALITY CONTROL

A. General

- 1. Demonstrate compliance of the heating, ventilating, and air conditioning control system with the contract documents. Furnish personnel, equipment, instrumentation, and supplies necessary to perform calibration and site testing. Ensure that test personnel are regularly employed in the testing and calibration of DDC systems.
- 2. Testing will include the field tests and the performance verification tests. Field tests shall demonstrate proper calibration of input and output devices, and the operation of specific equipment. Performance verification test shall ensure proper execution of the sequence of operation and proper tuning of control loops. A trend report summary shall be submitted for verification over a period of 5 days of operation to verify performance of all systems.
- 3. Obtain approval of the field test plan and performance verification test play for each phase of testing before beginning that phase of testing. Give to the Project Manager written notification of planned testing at least 30 days prior to test. Notification shall be accompanied by the proposed test procedures.
- 4. Before scheduling the performance verification test, furnish field test documentation and written Certified Statement of Field Test Completion to the A/E for approval. The statement, certified by the DDC system provider, states that the installed system has been calibrated, tested, and is ready for the performance verification test. Do not start the performance verification test prior to receiving written permission from the A/E.
- 5. Tests are subject to oversight and approval by the A/E. The testing shall not be run during scheduled seasonal off-periods of heating and cooling systems.
- B. Test Reporting for Field Testing and Performance Verification Tests
 - 1. During and after completion of the Field Tests, and again after the Performance Verification Tests, identify, determine causes, replace, repair or calibrate equipment that fails to meet the specification, and submit a written report to the A/E.
 - 2. Document all tests with detailed test results. Explain in detail the nature of each failure and corrective action taken. Provide a written report containing test documentation after the Field Tests and again after the Performance Verification Tests. Convene a test review meeting at the job site to present the results to the A/E. As part of this test review meeting, demonstrate by performing all portions of the field tests or performance verification test that each failure has been corrected. Based on the report and test review meeting, the A/E will determine either the restart point or successful completion of testing. Do not retest until after receipt of written notification by the A/E. At the conclusion of retest, assessment will be repeated.
- C. Contractor's Field Tests: Field tests shall include the following:
 - 1. System Inspection: Observe the HVAC system in its shutdown condition. Check dampers and valves for proper normal positions. Document each position for the test report.
 - 2. Calibration Accuracy and Operation of Inputs Test:

- a. Verify correct calibration and operation of input instruments. For each sensor and transmitter, including those for temperature, pressure, humidity, and air quality, record the reading at the sensor or transmitter location using calibrated test equipment. On the same table, record the corresponding reading at the digital controller for the test report.
- b. The test equipment shall have been calibrated within one year of use. Test equipment calibration shall be traceable to the measurement standards of the National Institute of Standards and Technology.
- 3. Actuator Range Adjustment Test: With the digital controller, apply a control signal to each actuator and verify that the actuator operates properly from its normal position to full range of stroke position. Record actual spring ranges and normal positions for all modulating control valves and dampers. Include documentation in the test report.
- 4. Digital Controller Startup and Memory Test: Demonstrate that programming is not lost after a power failure, and digital controllers automatically resume proper control after a power failure.
- 5. Surge Protection Test: Show that surge protection, meeting the requirements of this specification, has been installed on incoming power to the digital controllers and on communications lines.
- 6. Application Software Operation Test: Test compliance of the application software for:
 - a. Ability to communicate with the digital controllers, uploading and downloading of control programs
 - b. Text editing program: Demonstrate the ability to edit the control program off line.
 - c. Reporting of alarm conditions: Force alarms conditions for each alarm and ensure that workstation receives alarms.
 - d. Reporting trend and status reports: Demonstrate ability of software to receive and save trend and status reports.
- D. Performance Verification Tests: Conduct the performance verification tests to demonstrate control system maintains setpoints, control loops are tuned, and controllers are programmed for the correct sequence of operation. Conduct performance verification test during seven days of continuous HVAC and DDC systems operation and before final acceptance of work. Specifically, the performance verification test shall demonstrate the following:
 - 1. Execution of Sequence of Operation:
 - a. Demonstrate the HVAC system operates properly through the complete sequence of operation, for example seasonal, occupied/unoccupied, and warm-up. Demonstrate proper control system response for abnormal conditions by simulating these conditions. Demonstrate hardware interlocks and safeties work. Demonstrate the control system performs the correct sequence of control after a loss of power.
 - b. Controls contractor shall submit trend reports for minimum of 2 weeks period for each of the control points and prove that all the sequences of operations described on the control drawings are verified. Controls contractor shall correct all the sequence of operation deficiencies

identified in the system operation through the initial trend report, tweak the response time period of various controllers, calibrate/replace sensors if required and submit a final trend report for one-week period. The controls contractors' substantial completion will be approved only after the submission and verification of final trend report.

2. Control Loop Stability and Accuracy: Furnish the A/E graphed trends of control loops to demonstrate the control loop is stable and that set point is maintained. Control loop response shall respond to set point changes and stabilize in 3 minutes. Control loop trend data shall be real time and the time between data points shall not be greater than one minute. The contractor shall provide a printer, either the project printer or temporary, at the job site for printing graphed trends. The printer shall remain on the job site throughout Performance Verification Testing to allow printing trends.

END OF SECTION 23 09 23

SECTION 26 00 10 - BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 GENERAL

- A. Basic Requirements: The Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.
- B. General Provisions: Provide all labor, materials, equipment, and incidentals required to make ready for use complete electrical systems as specified herein and shown on the drawings.
- C. Provide and Install: The word "provide" where used on the drawings or in the specifications shall mean "furnish, install, mount, connect, test, complete, and make ready for operation". The word "install" where used on the drawings or in the specifications shall mean "mount, connect, test, complete, and make ready for operation". Perform work required by, and in accordance with, the contract documents.
- D. Installation: Provide and place in satisfactory condition, ready for proper operation, raceways, wires, cables, and other material needed for all complete electrical systems required by the Contract Documents. Additional raceways and wiring shall be provided to complete the installation of the specific equipment provided. Include auxiliaries and accessories for complete and properly operating systems. Provide electrical systems and accessories to comply with the NEC, state and local codes and ordinances. It is the intent of these Specifications that the electrical systems be suitable in every way for the use intended. Material and work which is incidental to the work of this Contract shall be provided at no additional cost to the Contract.
- E. Field Connections: Provide field connections to remote equipment and control panels provided under other Divisions of these Specifications. Install field connections to "packaged" equipment provided under other Divisions of these Specifications.

1.2 SCOPE OF WORK

A. General: Provide labor, materials, permits, inspections and re-inspection fees, tools, equipment, transportation, insurance, temporary protection, temporary power and lighting, supervision and incidental items essential for proper installation and operation of the Electrical systems indicated in the Contract Documents. Provide materials not specifically mentioned or indicated but which are usually provided or are essential for proper installation and operation of the Electrical systems installation and operation of the Electrical systems indicated but which are usually provided or are essential for proper installation and operation of the Electrical systems indicated in the contract documents.

B. Notices: Give notices, file Plans, pay fees, and obtain permits and approvals from authorities having jurisdiction. Include all fees in the Bid Price.

1.3 INTERPRETATION OF DRAWINGS

- A. General: The drawings are diagrammatic and are not intended to show exact locations of Raceway runs, outlet boxes, junction boxes, pull boxes, etc. The locations of equipment, appliances, fixtures, Raceways, outlets, boxes and similar devices shown on the drawings are approximate only. Exact locations shall be determined and coordinated in the field. The right is reserved to change, without additional cost, the location of any outlet within the same room or general area before it is permanently installed. Obtain all information relevant to the placing of electrical work and in case of interference with other work, proceed as directed by the Architect.
- B. Discrepancies: Notify the Architect of any discrepancies found during construction of the project. The Architect will provide written instructions as to how to proceed with that portion of work. If a conflict exists between the contract documents and an applicable code or standard, the most stringent requirement shall apply.
- C. Wiring: Each three-phase circuit shall be run in a separate Raceway unless otherwise shown on the drawings. Unless otherwise accepted by the Architect, Raceway shall not be installed exposed. Where circuits are shown as "home runs" all necessary fittings, supports, and boxes shall be provided for a complete raceway installation.
- D. Layout: Circuit layouts are not intended to show the number of fittings, or other installation details. Connections to equipment shall be made as required, and in accordance with the accepted shop and manufacturer's setting drawings.
- E. Coordination: Coordinate final equipment locations with drawings or other disciplines. Layout before installation so that all trades may install equipment in available space. Provide coordination as required for installation in a neat and workmanlike manner.

1.4 EQUIPMENT SIZE AND HANDLING

- A. Coordination: Investigate each space in the structure through which equipment must pass to reach its final location. If necessary, ship the equipment in sections of specific sizes to permit the passing through the necessary areas within the structure.
- B. Handling: Equipment shall be kept upright at all times. When equipment has to be tilted for ease of passage through restricted areas during transportation, the manufacturer shall be required to brace the equipment suitably, to insure that the tilting does not impair the functional integrity of the equipment.

1.5 RECORD DRAWINGS

A. The Contractor shall provide "As-Built Documents". The "As-Built" drawings shall accurately reflect installed work.

1.6 CODES, FEES, AND STANDARDS

- A. The codes, standards and practices listed herein generally apply to the entire project and specification sections. Other codes, standards or practices that are more specific will be referenced within a particular specification.
- B. All materials and types of construction covered in the specifications will be required to meet or exceed applicable standards of manufacturer, testing, performance, and installation according to the requirements of UL, ANSI, NEMA, IEEE, and NEC referenced documents where indicated and the manufacturer's recommended practices. Requirements indicated on the contract documents that exceed but are not contrary to governing codes shall be followed.
- C. The installation shall comply with the governing state and local codes or ordinances. The completed electrical installation shall be inspected and certified by applicable agencies that it is in compliance with codes.
- D. Materials and equipment shall be new and free of defects, and shall be U.L. listed, bear the U.L. label or be labeled or listed with an approved, nationally recognized Electrical Testing Agency. Where no labeling or listing service is available or desired for certain types of equipment, test data shall be submitted to validate that equipment meets or exceeds available standards.

1.7 SUPERVISION OF THE WORK

A. Provide one field superintendent who has had a minimum of four (4) years previous successful experience on projects of comparable sizes, type and complexity. The Superintendent shall be present at all times when work is being performed. At least one member of the Electrical Contracting Firm shall hold a State Master Certificate of Competency.

1.8 COORDINATION

- A. General: Compare drawings and specifications with those of other trades and report any discrepancies between them to the Architect. Obtain from the Architect written instructions to make the necessary changes in any of the affected work. Work shall be installed in cooperation with other trades installing interrelated work. Before installation, trades shall make proper provisions to avoid interferences in a manner approved by the Architect.
- B. Provide all required coordination and supervision where work connects to or is affected by work of others and comply with all requirements affecting this division. work required under other divisions, specifications or drawings to be performed by

this division shall be coordinated with the contractor and such work performed at no additional cost to owner.

- C. Obtain a complete set of Contract Documents from owner's authorized representative or contractor for all areas of work and include all electrical work in bid price whether included in Division 26 Contract Documents or not.
- D. Secure approved shop drawings from all required disciplines and verify final electrical characteristics before roughing power feeds to any equipment. When electrical data on approved shop drawings differs from that shown or called for in construction documents, make adjustments to the wiring, disconnects, and branch circuit protection to match that required for the equipment installed.
- E. Damage from interference caused by inadequate coordination shall be corrected at no additional cost to the Owner.
- F. Adjustments: Locations of raceway and equipment shall be adjusted to accommodate the work with interferences anticipated and encountered. Determine the exact routing and location of systems prior to fabrication or installation.
- G. Priorities: Lines which pitch shall have the right of way over those which do not pitch. For example, plumbing drains shall normally have the right of way. Lines whose elevations cannot be changed shall have the right of way over lines whose elevations can be changed.
- H. Modifications: Offsets and changes of direction in raceway systems shall be made to maintain proper headroom and pitch of sloping lines whether or not indicated on the drawings. Provide elbows, boxes, etc., as required to allow offsets and changes to suit job conditions.
- I. Replacement: Work shall be installed in a way to permit removal (without damage to other parts) of other system components provided under this Contract requiring periodic replacement or maintenance. Raceway shall be arranged in a manner to clear the openings of swinging overhead access doors as well as ceiling tiles.
- J. Layout: The contract drawings are diagrammatic only intending to show general runs and locations of raceway and equipment, and not necessarily showing required offsets, details and accessories and equipment to be connected. Work shall be accurately laid out with other trades to avoid conflicts and to obtain a neat and workmanlike installation, which will afford maximum accessibility for operation, maintenance and headroom.
- K. Contract Conflicts: Where discrepancies exist in the scope of work as to what trade provides items such as starters, disconnects, flow switches, etc. such conflicts shall be coordinated between the divisions involved. It is the intent of the contract documents that all work shall be provided complete as one bid price.
- L. Drawing Conflicts: Where drawing details, plans or specification requirements are in conflict and where sizes of the same item run are shown to be different within the contract documents, the most stringent requirement shall be included in the contract. Systems and equipment called for in the specification or as shown on the drawings shall be provided as if it was required by both the drawings and

specifications. Prior to ordering or installation of any portion of work, which appears to be in conflict, such work shall be brought to Architect's attention for direction as to what is to be provided.

- M. It is the responsibility of this contractor to coordinate the exact required location of floor outlets, floor ducts, floor stub-ups, etc. with owner's authorized representative and Designer (and receive their approval) prior to rough-in. Locations indicated in contract documents are only approximate locations.
- N. The contract documents describe specific sizes of switches, breakers, fuses, Raceways, conductors, motor starters and other items of wiring equipment. These sizes are based on specific items of power consuming equipment (heaters, lights, motors for fans, compressors, pumps, etc.). Coordinate the requirements of each load with each load's respective circuitry shown and with each load's requirements as noted on its nameplate data and manufacturer's published electrical criteria. Adjust circuit breaker, fuse, Raceway, and conductor sizes to meet the actual requirements of the equipment being provided and installed and change from single point to multiple points of connection (or vice versa) to meet equipment requirements. Changes shall be made at no additional cost to the owner.
- O. Working Clearances: Minimum working clearances about electrical equipment shall be as referenced in the applicable edition NEC Article 110 and shall include equipment installed in ceiling spaces.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Specified Method: Where several brand names, make or manufacturers are listed as acceptable each shall be regarded as equally acceptable, based on the design selection but each must meet all specification requirements. Where a manufacturer's model number is listed, this model shall set the standard of quality and performance required. Where no brand name is specified, the source and quality shall be subject to Engineer's review and acceptance. Where manufacturers are listed, one of the listed manufacturers shall be submitted for acceptance. No substitutions are permitted.
- B. Certification: When a product is specified to be in accordance with a trade association or government standard requested by the Engineer, Contractor shall provide a certificate that the product complies with the referenced standard. Upon request of engineer, contractor shall submit supporting test data to substantiate compliance.
- C. Basis of Bid: Each bidder represents that his bid is based upon the manufacturer's, materials, and equipment described in the Contract Documents.
- D. Space Requirements: Equipment or optional equipment shall conform to established space requirements within the project. Equipment which does not meet space requirements, shall be replaced at no additional expense to the contract.

Modifications of related systems shall be made at no additional expense to the contract. Submit modifications to the Architect/Engineer for acceptance.

2.2 SHOP DRAWINGS

- A. General: Shop drawings shall be submitted for every item listed within the Submittals section each individual specification section. One copy shall be submitted to the engineer prior to ordering equipment. Refer to Basis of approval paragraph.
- B. Responsibility: It is the contractor's responsibility to provide material in accordance with the plans and specifications. Material not provided in accordance with the plans and specifications shall be removed and replaced at the contractor's expense.
- C. Official Record: The shop drawing submittal shall become the official record of the materials to be installed. If materials are installed which do not correspond to the record submittal they shall be removed from the project without any additional cost or delays in construction completion.
- D. Basis of Review: Approval is only for general conformance with the design concept of the project and general compliance with the information given in the contract documents. Contractor is responsible for quantities, dimensions, fabrication processes, and construction techniques.
- E. Responsibility: The responsibility that dimensions are confirmed and correlated with proper coordination of other trades shall be included as part of the contract documents. The responsibility and the necessity of providing materials and workmanship required by the specifications and drawings which may not be indicated on the shop drawings shall be included as part of the Contract Documents. The Contractor is responsible for any delays in job progress occurring directly or indirectly from late submissions or re-submissions of shop drawings, product data, or samples.
- F. Ordering Equipment: No material shall be ordered, or shop work started until the Engineer has officially received the shop drawings record submittal and has formally released the Contractor for submittal requirements.

2.3 EQUIPMENT, MATERIALS, AND SUPPORTS

- A. General: Each item of equipment or material shall be manufactured by a company regularly engaged in the manufacturer of the type and size of equipment, shall be suitable for the environment in which it is to be installed, shall be approved for its purpose, environment, and application, and shall bear the UL label.
- B. Installation Requirements: Each item of equipment or material shall be installed in accordance with instructions and recommendations of the manufacturer, however, the methods shall not be less stringent than specified herein.
- C. Required Accessories: Provide all devices and materials, such as expansion bolts, foundation bolts, screws, channels, angles, and other attaching means, required to

fasten enclosures, raceways, and other electrical equipment and materials to be mounted on structures which are existing or new.

D. Protection: Electrical equipment shall at all times during construction be adequately protected against mechanical injury or damage by the elements. Equipment shall be stored in dry permanent shelters. If apparatus has been damaged, such damage shall be repaired at no additional cost or time extension to the contract. If apparatus has been subject to possible injury, it shall be thoroughly cleaned, dried out and put through tests as directed by the manufacturer and engineer, or shall be replaced, if directed by the Engineer, at no additional cost to the Contract.

2.4 IDENTIFICATION OF EQUIPMENT

A. General: Electrical items shall be identified as specified in the contract documents. Such identification shall be in addition to the manufacturer's nameplates and shall serve to identify the item's function and the equipment or system, which it serves or controls. Refer to identification section of the specifications for additional information.

2.5 CONCRETE PADS

A. General: Provide reinforced concrete pads for floor mounted electrical equipment. Unless otherwise noted, pads shall be nominal four (4) inches high and shall exceed dimensions of equipment being set on them, including future sections, by six (6) inches on all sides, except when equipment is flush against a wall, then the side or sides against the wall shall be flush with the equipment. Chamfer top edges 1/2". Trowel surfaces smooth. Reinforce pads with #5 reinforcing bars at 24" centers each way, unless specifically detailed on drawings.

2.6 SURFACE MOUNTED EQUIPMENT

A. General: Surface mounted fixtures, outlets, cabinets, panels, etc. shall have a factory-applied finish or shall be painted as accepted by Engineer. Raceways and fittings, where allowed to be installed surface mounted, shall be painted to match the finish on which it was installed. Paint shall be in accordance with other applicable sections of these specifications.

2.7 CUTTING AND PATCHING

- A. Core Drilling: The contractor shall be responsible for core drilling as required for work under this section, but in no case shall the contractor cut into or weld onto any structural element of the project without the written approval of the Architect.
- B. Cutting and Patching: Cutting, rough patching and finish patching shall be provided as specified in the contract documents. Cutting and patching shall be performed in a neat and workmanlike manner. Upon completion, the patched area shall match adjacent surfaces.

- C. Openings and Sleeves: Locate openings required for work performed under this section. Provide sleeves, guards or other accepted methods to allow passage of items installed under this section.
- D. Roof Penetration: Provide roofer with pitch pans, fittings, etc., required for electrical items which penetrate the roof. Roof penetrations are to be waterproofed in such a manner that roofing guarantees are fully in force. Roof penetrations shall be coordinated with other trades to ensure that roof warranty is not invalidated.

2.8 SLEEVES AND FORMS FOR OPENINGS

- A. Sleeves: Provide sleeves for Raceways penetrating floors, walls, partitions, etc. Locate necessary slots for electrical work and form before concrete is poured. Watertight sleeves shall be line seal type WS. Fire rated partition sleeves shall be mild steel. Sleeves shall be Schedule 40 PVC or galvanized rigid steel unless specifically noted otherwise. Size shall be one standard diameter larger than pipe being installed or of a larger diameter to below 1/4" minimum clearance.
- B. Forms: Provide boxed out forms for Raceway penetrations only where allowed by the Architect. Fill opening after Raceway installation, with equivalent material.

2.9 SERVICE AND METERING

- A. Service: Make arrangements with the utility company for obtaining a complete service. Pay charges and provide labor and material for the service.
- B. Fees: Contact the utility company to determine if any fees, charges or costs will be due the company, as required for temporary power, permanent power, installations, hook-ups, etc. This fee, charge or cost shall be included in the bid price.
- C. Payment: Pay for required licenses, fees and inspections. Include costs in the proposed construction cost submission. These costs shall include but not be limited to applicable taxes, permits, necessary notices, certificates and costs required to obtain same.

2.10 TEMPORARY LIGHT AND POWER

- A. Capacity: Provide capacity from new temporary service. Make arrangements with the owner for temporary service and pay all related expenses. Temporary light and power shall be provided constantly during the project dependent upon owner's safety requirements.
- B. Lighting: Temporary light shall be based on one 200-watt lamp covering each 1,000 square foot of floor area in the building. Each room 100 square foot and over shall have a minimum of one 100-watt lamp with guards. Provisions are to be made for electric welders, if required.

PART 3 - EXECUTION

3.1 WORKMANSHIP

- A. General: The installation of materials and equipment shall be performed in a neat, workmanlike and timely manner by an adequate number of craftsmen knowledgeable of the requirements of the contract documents. They shall be skilled in the methods and craftsmanship needed to produce a quality level of workmanship. Personnel who install materials and equipment shall be qualified by training and experience to perform their assigned tasks.
- B. Acceptable Workmanship: Acceptable workmanship is characterized by first-quality appearance and function, conforming to applicable standards of building system construction, and exhibiting a high degree of quality and proficiency which is judged by the Architect as equivalent or better than that ordinarily produced by qualified industry tradesmen.
- C. Performance: Personnel shall not be used in the performance of the installation of material and equipment who, in the opinion of the Architect, are deemed to be careless or unqualified to perform the assigned tasks. Material and equipment installations not in compliance with the contract documents or installed with substandard workmanship and not acceptable to the Architect, shall be removed and reinstalled by qualified craftsmen, at no change in the contract price.

3.2 PROTECTION AND CLEAN UP

- A. Protection and Restoration: Suitably protect equipment provided under this division during construction. Restore damaged surfaces and items to "like new" condition before a request for substantial completion inspection.
- B. Handling: Materials shall be properly protected, and Raceway openings shall be temporarily closed by the contractor to prevent obstruction and damage. Post notice prohibiting the use of systems provided under this contract, prior to completion of work and acceptance of systems by the Owner's representative. The contractor shall take precautions to protect his materials from damage and theft.
- C. Safeguards: The contractor shall furnish, place and maintain proper safety guards for the prevention of accidents that might be caused by the workmanship, materials, equipment or systems provided under this contract.
- D. Cleanup: Keep the job site free from debris and rubbish. Remove debris and rubbish from the site and leave premises in clean condition on a daily basis.

3.3 SYSTEMS GUARANTEE

A. General: Provide a one-year guarantee. This guarantee shall be by the contractor to the owner for any defective workmanship or material, which has been provided under this contract at no cost to the owner for a period of one year from the date of substantial completion of the system.

3.4 SPECIAL CONSIDERATIONS

A. Comply with special requirements imposed at site by owner. This may include badging of employees, prohibition of smoking, special working hours, or special working conditions.

END OF SECTION 26 00 10

SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.
- PART 2 PRODUCTS
- 2.1 COPPER BUILDING WIRE
 - A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
 - B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cerro Wire LLC.
 - 2. Encore Wire Corporation.
 - 3. General Cable Technologies Corporation.
 - 4. Okonite Company (The).
 - 5. Southwire Company.

- C. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- E. Conductor Insulation:
 - 1. Type THHN and Type THWN-2: Comply with UL 83.

2.2 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- PART 3 EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- C. VFD Output Circuits: Stranded for all sizes.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.
 - B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
 - C. Feeders Concealed in Ceilings, Walls, Partitions: Type THHN/THWN-2, single conductors in raceway.
 - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

- E. Exposed Branch Circuits: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
- H. VFD Output Circuits: Type TC-ER cable with braided shield.
- 3.3 INSTALLATION OF CONDUCTORS AND CABLES
 - A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
 - B. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
 - C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
 - D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
 - E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
 - F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor and identify as spare conductor.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage.
 - b. Inspect compression-applied connectors for correct cable match and indentation.
 - c. Inspect for correct identification.
 - d. Inspect cable jacket and condition.
 - e. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - f. Continuity test on each conductor and cable.
 - g. Uniform resistance of parallel conductors.
- B. Cables will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 05 19

SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment, plus the following special applications:
 - 1. Ground bonding common with lightning protection system.
 - 2. Foundation steel electrodes.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data:
 - 1. Include the following:
 - a. Plans showing as-built, dimensioned locations of grounding features, including the following:
 - 1) Test wells.
 - 2) Ground rods.
 - 3) Ground rings.
 - 4) Grounding arrangements and connections for separately derived systems.
 - b. Instructions for periodic testing and inspection of grounding features at test wells.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Lightning Technology, Ltd.
 - 2. Burndy; Part of Hubbell Electrical Systems.
 - 3. Dossert; AFL Telecommunications LLC.
 - 4. ERICO International Corporation.
 - 5. Fushi Copperweld Inc.
 - 6. Galvan Industries, Inc.; Electrical Products Division, LLC.
 - 7. Harger Lightning & Grounding.
 - 8. ILSCO.
 - 9. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 10. Robbins Lightning, Inc.
 - 11. SIEMENS Industry, Inc.; Energy Management Division.
 - 12. Thomas & Betts Corporation; A Member of the ABB Group.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- C. Grounding Bus: Predrilled rectangular bars of annealed copper. See details on drawings.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compressiontype wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- E. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- F. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- G. Conduit Hubs: Mechanical type, terminal with threaded hub.
- H. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- I. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.
- J. Water Pipe Clamps: U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial].

2.5 GROUNDING ELECTRODES

- A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet.
- B. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 4/0 AWG minimum. Bury at least 24 inches below grade.
- C. Grounding Bus: Install in electrical and communications equipment rooms, as indicated.

- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

- A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.
- 3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS
 - A. Comply with IEEE C2 grounding requirements.
 - B. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.
- C. Metallic Fences: Comply with requirements of IEEE C2.
 - 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 - 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 - 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.5 FENCE GROUNDING

- A. Fence Grounding: Install at maximum intervals of 750 feet.
 - 1. Gates and Other Fence Openings: Ground fence on each side of opening.
 - a. Bond metal gates to gate posts.

- b. Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
- B. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.
- C. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.
- D. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.6 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor and install in conduit.
- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
 - 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- D. Test Wells: Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.

- 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- G. Ground Ring: Install a grounding conductor extending around the perimeter of building.
- H. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.
- I. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.

- 4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 26 05 26

SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Steel slotted support systems.
 - 2. Aluminum slotted support systems.
 - 3. Conduit and cable support devices.
 - 4. Structural steel for fabricated supports and restraints.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. For fabrication and installation details for electrical hangers and support systems.
 - 1. Hangers. Include product data for components.
 - 2. Slotted support systems.
 - 3. Equipment supports.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 - 1. Include design calculations and details of hangers.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.

- B. Aluminum Slotted Support Systems: Extruded-aluminum channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
- C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
- E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.3 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Anchor equipment to concrete base.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29

SECTION 26 05 33 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Non-Metallic conduits and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Boxes, enclosures, and cabinets.
 - 5. Handholes and boxes for exterior underground cabling.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For all products
- PART 2 PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. GRC: Comply with ANSI C80.1 and UL 6.
 - 3. PVC-Coated Steel Conduit:
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
 - 4. EMT: Comply with ANSI C80.3 and UL 797.
 - 5. FMC: Comply with UL 1.
 - 6. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.

- 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
- 4. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
- 5. Fittings for EMT: Steel or die cast. Setscrew or compression.
- 6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- 7. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- C. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Nonmetallic Conduit:
 - 1. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- B. Nonmetallic Fittings:
 - 1. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 2. Fittings for ENT: Comply with NEMA TC 3; match to conduit or tubing type and material.
 - 3. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 or Type 3R unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Screw-cover type unless otherwise indicated.
- D. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, Type FD, with gasketed cover.
- D. Metal Floor Boxes:
 - 1. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- F. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, with gasketed cover.
- G. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- I. Cabinets:
 - 1. NEMA 250, Type 1 or Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.5 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

- A. General Requirements for Handholes and Boxes:
 - 1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
 - 2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Polymer-Concrete Handholes and Boxes with Polymer-Concrete Cover: Molded of sand and aggregate, bound together with polymer resin, and reinforced with steel, fiberglass, or a combination of the two.

- 1. Standard: Comply with SCTE 77.
- 2. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
- 3. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
- 4. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- 5. Cover Legend: Molded lettering, "Electric" or "Communications".
- 6. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: GRC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC.
 - 4. Connection to Vibrating Equipment: LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed and Subject to Physical Damage: GRC.
 - 3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 4. Connection to Vibrating Equipment: FMC, except use LFMC in damp or wet locations.
 - 5. Damp or Wet Locations: GRC.
 - 6. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.

3.2 INSTALLATION

- A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

- C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- D. Do not fasten conduits onto the bottom side of a metal deck roof.
- E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hotwater pipes. Install horizontal raceway runs above water and steam piping.
- F. Complete raceway installation before starting conductor installation.
- G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
- I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- K. Support conduit within 12 inches of enclosures to which attached.
- L. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from RNC to GRC before rising above floor.
- M. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- N. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- O. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- P. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger

conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

- Q. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- R. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- S. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- T. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where an underground service raceway enters a building or structure.
 - 3. Conduit extending from interior to exterior of building.
 - 4. Conduit extending into pressurized duct and equipment.
 - 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
 - 6. Where otherwise required by NFPA 70.
- W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- Z. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.
- AA. Locate boxes so that cover or plate will not span different building finishes.

- BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- DD. Set metal floor boxes level and flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

- A. Direct-Buried Conduit:
 - 1. Excavate trench bottom to provide firm and uniform support for conduit.
 - 2. Install backfill.
 - 3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction.
 - 4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 - a. Couple steel conduits to ducts with adapters designed for this purpose and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 - b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.
 - 6. Underground Warning Tape: Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

- C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.
- D. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.6 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 05 33

SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 - 2. Labels.
 - 3. Tapes and stencils.
 - 4. Signs.
 - 5. Paint for identification.
 - 6. Fasteners for labels and signs.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- PART 2 PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Comply with NFPA 70E for arc-flash warning labels.
- F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase Identification, 600 V or Less: Use colors listed below for ungrounded conductors.
 - 1. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 2. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 3. Color for Neutral: White or gray.
 - 4. Color for Equipment Grounds: Bare copper, Green or Green with a yellow stripe.
 - 5. Colors for Isolated Grounds: Green with white stripe.
- C. Raceways and Cables Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
- D. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
- E. Warning labels and signs shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."
 - 2. Workspace Clearance Warning: "WARNING OSHA REGULATION AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."
- F. Equipment Identification Labels:
 - 1. Black letters on a white field.

- 2.3 LABELS
 - A. Self-Adhesive Labels: Thermal, transfer-printed, 3-mil-thick, multicolor, weatherand UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches for raceway and conductors.
 - b. 3-1/2 by 5 inches for equipment.
 - B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - C. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - D. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and are 12 inches wide. Stop stripes at legends.
 - E. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 - F. Underground-Line Warning Tape:
 - 1. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 2. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE" .
 - c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

2.4 SIGNS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:

- a. For signs up to 20 sq. in., minimum 1/16 inch thick.
- b. For signs larger than 20 sq. in., 1/8 inch thick.
- c. Engraved legend with black letters on white face.

2.5 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainlesssteel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.

- H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- I. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions.
- K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
 - 3. "UPS."
- M. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- N. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- O. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- P. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- Q. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- R. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

- S. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- T. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade.
- U. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Raceways: Identify with self-adhesive raceway labels. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- D. Conductors: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive labels to identify the phase.
- E. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- F. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- G. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels
- I. Arc Flash Warning Labeling: Self-adhesive labels.
- J. Operating Instruction Signs: Self-adhesive labels

- K. Emergency Operating Instruction Signs: Laminated acrylic or melamine plastic signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions.
- L. Equipment Identification Labels:
 - 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled: All equipment.

END OF SECTION 26 05 53

SECTION 26 22 00 - LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Dry-type transformers rated 600 V and less.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
- B. Shop Drawings:
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
- PART 2 PRODUCTS
- 2.1 MANUFACTURERS
 - A. Manufacturers: Square D; by Schneider Electric.
- 2.2 GENERAL TRANSFORMER REQUIREMENTS
 - A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
 - B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - C. Transformers Rated 15 kVA and Larger: Comply with NEMA TP 1 energy-efficiency levels as verified by testing according to NEMA TP 2.
 - D. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - E. Coils: Continuous windings without splices except for taps.
 - 1. Internal Coil Connections: Brazed or pressure type.
 - 2. Coil Material: Aluminum.
 - F. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.
 - G. Shipping Restraints: Paint or otherwise color code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 TRANSFORMERS

- A. Comply with NFPA 70, and list and label as complying with UL 1561.
- B. Cores: One leg per phase.
- C. Enclosure: Ventilated.

- 1. NEMA 250, Type 3R: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
- D. Transformer Enclosure Finish: Comply with NEMA 250.
 - 1. Finish Color: Gray.
- E. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.
- F. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above, and one 5 percent tap below normal full capacity.
- G. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- H. Insulation Class, Smaller than 30 kVA: 185 deg C, UL-component-recognized insulation system with a maximum of 115-deg C rise above 40-deg C ambient temperature.
- I. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150-deg C rise above 40-deg C ambient temperature.
- J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.
 - 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 - 2. Indicate value of K-factor on transformer nameplate.
 - 3. Unit shall meet requirements of NEMA TP 1 when tested according to NEMA TP 2 with a K-factor equal to one.
- K. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 - 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 - 2. Include special terminal for grounding the shield.
- L. Neutral: Rated 200 percent of full load current for K-factor rated transformers.
- M. Wall Brackets: Manufacturer's standard brackets.
- N. Fungus Proofing: Permanent fungicidal treatment for coil and core.

2.4 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic. Nameplates and label products are specified in Section 26 05 53 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.
- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install transformers level and plumb on a concrete base, and anchor floor-mounted transformers according to manufacturer's written instructions.
- B. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

- 3.4 FIELD QUALITY CONTROL
 - A. Perform tests and inspections.
 - B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS for dry-type, air-cooled, low-voltage transformers. Certify compliance with test parameters.
 - C. Remove and replace units that do not pass tests or inspections and retest as specified above.
 - D. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 26 22 00

SECTION 26 24 16 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 6. Include evidence of NRTL listing for series rating of installed devices.
 - 7. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 8. Include wiring diagrams for power, signal, and control wiring.
 - 9. Key interlock scheme drawing and sequence of operations.
 - 10. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

- 1.4 INFORMATIONAL SUBMITTALS
 - A. Test Reports.
 - B. Schedules: Submit final versions with O&M.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data.
- 1.6 QUALITY ASSURANCE
 - A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.7 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.

1.8 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.

- C. Comply with NFPA 70.
- D. Enclosures: Dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel.
 - d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Height: 84 inches maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.
 - 6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.
 - 7. Finishes:
 - a. Panels and Trim: Galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
 - c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
- E. Phase, Neutral, and Ground Buses:
 - 1. Material: Tin-plated aluminum.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
 - 5. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and listed and labeled by an NRTL acceptable to authority having jurisdiction, as suitable for nonlinear loads in electronic-grade panelboards and others

designated on Drawings. Connectors shall be sized for double-sized or parallel conductors as indicated on Drawings. Do not mount neutral bus in gutter.

- F. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Subfeed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
 - 8. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extra-capacity neutral bus.
- G. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- H. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- I. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include label or manual with size and type of allowable upstream and branch devices listed and labeled by an NRTL for series-connected short-circuit rating.
 - 1. Panelboards rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.
- J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical shortcircuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 DISTRIBUTION PANELBOARDS

- A. Manufacturers: Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: None
- D. Mains: As specified.
- E. Branch Overcurrent Protective Devices: Bolt-on circuit breakers

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. SIEMENS Industry, Inc.; Energy Management Division.
 - 2. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- D. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489, with fully rated interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Electronic Trip Circuit Breakers (600A and larger):
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - e. Field-Adjustable Settings.
 - 3. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

- 4. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).
- 5. Arc-Fault Circuit Interrupter Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration.
- 6. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Suitable for number, size, trip ratings, and conductor materials.
 - e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 - f. Shunt Trip (when indicated): 120-V trip coil energized from separate circuit.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Mount panelboard cabinet plumb and rigid without distortion of box.
- D. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- E. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.

3.3 IDENTIFICATION

- A. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- C. Install warning and arc-flash signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems".

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection stated in NETA ATS. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges.
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

END OF SECTION 26 24 16

SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Receptacles.
 - 2. GFCI receptacles.
 - 3. Twist-locking receptacles.
 - 4. Toggle switches.
 - 5. Wall plates.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data.
- PART 2 PRODUCTS
- 2.1 GENERAL WIRING-DEVICE REQUIREMENTS
 - A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - B. Comply with NFPA 70.
 - C. RoHS compliant.
 - D. Comply with NEMA WD 1.
 - E. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.

WIRING DEVICES

- 2. Cord and Plug Sets: Match equipment requirements.
- F. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect.
- G. Wall Plate Color: For plastic covers, match device color.
- H. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Eaton (Arrow Hart).
- 2. Hubbell Incorporated; Wiring Device-Kellems.
- 3. Leviton Manufacturing Co., Inc.
- 4. Pass & Seymour/Legrand (Pass & Seymour).

2.2 STANDARD-GRADE RECEPTACLES

- A. Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.
- B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

2.3 GFCI RECEPTACLES

- A. Duplex GFCI Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Type: Non-feed through.
 - 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- B. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20:

- 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
- 2. Configuration: NEMA WD 6, Configuration 5-15R.
- 3. Type: Non-feed through.
- 4. Standards: Comply with UL 498 and UL 943 Class A.
- 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.4 TWIST-LOCKING RECEPTACLES

- A. Twist-Lock, Single Receptacles, 120 V, 20 A:
 - 1. Configuration: NEMA WD 6, Configuration L5-20R.
 - 2. Standards: Comply with UL 498.
- B. Twist-Lock, Single Receptacles, 250 V, 20 A:
 - 1. Configuration: NEMA WD 6, Configuration L6-20R.
 - 2. Standards: Comply with UL 498.

2.5 TOGGLE SWITCHES

- A. Single-Pole Switches, 120/277 V, 20 A:
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- B. Two-Pole Switches, 120/277 V, 20 A:
 - 1. Comply with UL 20 and FS W-S-896.
- C. Three-Way Switches, 120/277 V, 20 A:
 - 1. Comply with UL 20 and FS W-S-896.

2.6 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic
 - 3. Material for Unfinished Spaces: Smooth, high-impact thermoplastic.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover and listed and labeled for use in wet and damp locations.
- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.

- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

- A. Comply with Section 26 05 53 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective

devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 26 27 26

SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Enclosures.

1.3 ACTION SUBMITTALS

- A. Product Data: Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.5 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 GENERAL REQUIREMENTS
 - A. Manufacturers: Square D; by Schneider Electric.
 - B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
 - C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
 - D. Comply with NFPA 70.
 - E. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 24-V ac.
 - 5. Hookstick Handle: Allows use of a hookstick to operate the handle.

2.2 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
 - 2. Lockable handle with capability to accept three padlocks and interlocked with cover in closed position.
 - 3. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 4. Service-Rated Switches: Labeled for use as service equipment.

2.3 NONFUSIBLE SWITCHES

A. Type HD, Heavy Duty: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1), gray baked enamel paint, electrodeposited on cleaned, phosphatized galvanized steel (NEMA 250 Types 3R, 12), a brush finish on Type 304 stainless steel (NEMA 250 Type 4-4X stainless steel).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R
 - 3. Kitchen and Wash-Down Areas: NEMA 250, Type 4X, stainless steel
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4X, stainless steel
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.3 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

- A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

- a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
- i. Verify correct phase barrier installation.
- j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- 2. Electrical Tests:
 - a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 - c. Perform insulation-resistance tests for one minute on each pole, phaseto-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
 - d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
 - e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."
- C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.

END OF SECTION 26 28 16

SECTION 26 43 13 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.4 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For manufacturer's special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS

- A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Comply with UL 1449.
- D. MCOV of the SPD shall be the nominal system voltage.
- E. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Protection Technologies Inc. (APT).
 - 2. Atlantic Scientific.
 - 3. Current Technology Inc.
 - 4. Eaton.
 - 5. LEA International.
 - 6. Leviton Manufacturing Co., Inc.
 - 7. Liebert; a brand of Emerson Electric Co.
 - 8. Northern Technologies, Inc.
 - 9. Schneider Electric USA, Inc.
 - 10. SIEMENS Industry, Inc.; Energy Management Division.
 - 11. Square D; by Schneider Electric.
 - 12. SSI, an ILSCO Company.
- 2.2 SERVICE ENTRANCE SUPPRESSOR
 - A. SPDs: Comply with UL 1449, Type 1.
 - 1. SPDs with the following features and accessories:
 - a. Integral disconnect switch.
 - b. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - c. Indicator light display for protection status.
 - d. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status.
 - e. Surge counter.
 - B. Comply with UL 1283.
 - C. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 320 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

- D. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V.
 - 3. Line to Line: 2000 V for 480Y/277 V.
- E. SCCR: Equal or exceed 100 kA.
- F. Inominal Rating: 20 kA.
- 2.3 PANEL SUPPRESSORS
 - A. SPDs: Comply with UL 1449, Type 2.
 - 1. Include LED indicator lights for power and protection status.
 - 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Include Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status.
 - B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.
 - C. Comply with UL 1283.
 - D. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V and 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 - 1. Line to Neutral: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 2. Line to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 3. Neutral to Ground: 1200 V for 480Y/277 V and 700 V for 208Y/120 V.
 - 4. Line to Line: 2000 V for 480Y/277 V and 1200 V for 208Y/120 V.
 - E. SCCR: Equal or exceed 100 kA.
 - F. Inominal Rating: 20 kA.

2.4 ENCLOSURES

A. Indoor Enclosures: NEMA 250, Type 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

- B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
- C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
- D. Use crimped connectors and splices only. Wire nuts are unacceptable.
- E. Wiring:
 - 1. Power Wiring: Comply with wiring methods in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 - 2. Controls: Comply with wiring methods in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factoryauthorized service representative.
 - 1. Compare equipment nameplate data for compliance with Drawings and Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.
- B. An SPD will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

- A. Complete startup checks according to manufacturer's written instructions.
- B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests and reconnect them immediately after the testing is over.
- C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 26 43 13